Added tabular view

This commit is contained in:
Richard Hudson 2021-12-08 14:30:38 +01:00
parent e04950ef3c
commit 9f7f234b0f
4 changed files with 710 additions and 68 deletions

View File

@ -1,5 +1,7 @@
import pytest
from spacy.util import get_lang_class
from spacy.lang.en import English
from spacy.tokens import Doc
def pytest_addoption(parser):
@ -390,3 +392,239 @@ def zh_tokenizer_pkuseg():
@pytest.fixture(scope="session")
def hy_tokenizer():
return get_lang_class("hy")().tokenizer
@pytest.fixture
def tagged_doc():
text = "Sarah's sister flew to Silicon Valley via London."
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = [
"PROPN",
"PART",
"NOUN",
"VERB",
"ADP",
"PROPN",
"PROPN",
"ADP",
"PROPN",
"PUNCT",
]
morphs = [
"NounType=prop|Number=sing",
"Poss=yes",
"Number=sing",
"Tense=past|VerbForm=fin",
"",
"NounType=prop|Number=sing",
"NounType=prop|Number=sing",
"",
"NounType=prop|Number=sing",
"PunctType=peri",
]
nlp = English()
doc = nlp(text)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].pos_ = pos[i]
doc[i].set_morph(morphs[i])
if i > 0:
doc[i].is_sent_start = False
return doc
@pytest.fixture
def fully_featured_doc_one_sentence(en_vocab):
words = [
"Sarah",
"'s",
"sister",
"flew",
"to",
"Silicon",
"Valley",
"via",
"London",
".",
]
lemmas = [
"sarah",
"'s",
"sister",
"fly",
"to",
"silicon",
"valley",
"via",
"london",
".",
]
spaces = [False, True, True, True, True, True, True, True, False, False]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = [
"PROPN",
"PART",
"NOUN",
"VERB",
"ADP",
"PROPN",
"PROPN",
"ADP",
"PROPN",
"PUNCT",
]
morphs = [
"NounType=prop|Number=sing",
"Poss=yes",
"Number=sing",
"Tense=past|VerbForm=fin",
"",
"NounType=prop|Number=sing",
"NounType=prop|Number=sing",
"",
"NounType=prop|Number=sing",
"PunctType=peri",
]
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 3]
deps = [
"poss",
"case",
"nsubj",
"ROOT",
"prep",
"compound",
"pobj",
"prep",
"pobj",
"punct",
]
ent_types = ["PERSON", "", "", "", "", "GPE", "GPE", "", "GPE", ""]
doc = Doc(
en_vocab,
words=words,
lemmas=lemmas,
spaces=spaces,
heads=heads,
deps=deps,
morphs=morphs,
)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].pos_ = pos[i]
doc[i].ent_type_ = ent_types[i]
return doc
@pytest.fixture
def fully_featured_doc_two_sentences(en_vocab):
words = [
"Sarah",
"'s",
"sister",
"flew",
"to",
"Silicon",
"Valley",
"via",
"London",
".",
"She",
"loved",
"it",
"."
]
lemmas = [
"sarah",
"'s",
"sister",
"fly",
"to",
"silicon",
"valley",
"via",
"london",
".",
"she",
"love",
"it",
"."
]
spaces = [False, True, True, True, True, True, True, True, False, False, True, True, False, False]
pos = [
"PROPN",
"PART",
"NOUN",
"VERB",
"ADP",
"PROPN",
"PROPN",
"ADP",
"PROPN",
"PUNCT",
"PRON",
"VERB",
"PRON",
"PUNCT"
]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", ".", "PRP", "VBD", "PRP", "."]
morphs = [
"NounType=prop|Number=sing",
"Poss=yes",
"Number=sing",
"Tense=past|VerbForm=fin",
"",
"NounType=prop|Number=sing",
"NounType=prop|Number=sing",
"",
"NounType=prop|Number=sing",
"PunctType=peri",
"Case=Nom|Gender=Fem|Number=Sing|Person=3|PronType=Prs",
"Tense=Past|VerbForm=Fin",
"Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs",
"PunctType=peri",
]
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 3, 11, 11, 11, 11]
deps = [
"poss",
"case",
"nsubj",
"ROOT",
"prep",
"compound",
"pobj",
"prep",
"pobj",
"punct",
"nsubj",
"ROOT",
"dobj",
"punct",
]
ent_types = ["PERSON", "", "", "", "", "GPE", "GPE", "", "GPE", "", "", "", "", ""]
doc = Doc(
en_vocab,
words=words,
lemmas=lemmas,
spaces=spaces,
heads=heads,
deps=deps,
morphs=morphs,
)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].pos_ = pos[i]
doc[i].ent_type_ = ent_types[i]
return doc
@pytest.fixture
def sented_doc():
text = "One sentence. Two sentences. Three sentences."
nlp = English()
doc = nlp(text)
for i in range(len(doc)):
if i % 3 == 0:
doc[i].is_sent_start = True
else:
doc[i].is_sent_start = False
return doc

View File

@ -43,58 +43,6 @@ test_ner_apple = [
]
@pytest.fixture
def tagged_doc():
text = "Sarah's sister flew to Silicon Valley via London."
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = [
"PROPN",
"PART",
"NOUN",
"VERB",
"ADP",
"PROPN",
"PROPN",
"ADP",
"PROPN",
"PUNCT",
]
morphs = [
"NounType=prop|Number=sing",
"Poss=yes",
"Number=sing",
"Tense=past|VerbForm=fin",
"",
"NounType=prop|Number=sing",
"NounType=prop|Number=sing",
"",
"NounType=prop|Number=sing",
"PunctType=peri",
]
nlp = English()
doc = nlp(text)
for i in range(len(tags)):
doc[i].tag_ = tags[i]
doc[i].pos_ = pos[i]
doc[i].set_morph(morphs[i])
if i > 0:
doc[i].is_sent_start = False
return doc
@pytest.fixture
def sented_doc():
text = "One sentence. Two sentences. Three sentences."
nlp = English()
doc = nlp(text)
for i in range(len(doc)):
if i % 3 == 0:
doc[i].is_sent_start = True
else:
doc[i].is_sent_start = False
return doc
def test_tokenization(sented_doc):
scorer = Scorer()
gold = {"sent_starts": [t.sent_start for t in sented_doc]}

View File

@ -1,10 +1,14 @@
import pytest
import deplacy
from spacy.visualization import Visualizer
from spacy.tokens import Span, Doc
from wasabi.util import supports_ansi
from spacy.visualization import AttributeFormat, Visualizer
from spacy.tokens import Span, Doc, Token
def test_dependency_tree_basic(en_vocab):
SUPPORTS_ANSI = supports_ansi()
def test_visualization_dependency_tree_basic(en_vocab):
"""Test basic dependency tree display."""
doc = Doc(
en_vocab,
@ -48,7 +52,7 @@ def test_dependency_tree_basic(en_vocab):
]
def test_dependency_tree_non_initial_sentence(en_vocab):
def test_visualization_dependency_tree_non_initial_sentence(en_vocab):
"""Test basic dependency tree display."""
doc = Doc(
en_vocab,
@ -95,8 +99,8 @@ def test_dependency_tree_non_initial_sentence(en_vocab):
]
def test_dependency_tree_non_projective(en_vocab):
"""Test dependency tree display with a non-prejective dependency."""
def test_visualization_dependency_tree_non_projective(en_vocab):
"""Test dependency tree display with a non-projective dependency."""
doc = Doc(
en_vocab,
words=[
@ -114,8 +118,6 @@ def test_dependency_tree_non_projective(en_vocab):
deps=["dep"] * 9,
)
dep_tree = Visualizer.render_dependency_tree(doc[0 : len(doc)], True)
for line in dep_tree:
print(line)
assert dep_tree == [
"<╗ ",
"═╩═══╗",
@ -141,7 +143,7 @@ def test_dependency_tree_non_projective(en_vocab):
]
def test_dependency_tree_input_not_span(en_vocab):
def test_visualization_dependency_tree_input_not_span(en_vocab):
"""Test dependency tree display behaviour when the input is not a Span."""
doc = Doc(
en_vocab,
@ -163,7 +165,8 @@ def test_dependency_tree_input_not_span(en_vocab):
with pytest.raises(AssertionError):
Visualizer.render_dependency_tree(doc[1:3], True)
def test_dependency_tree_highly_nonprojective(en_vocab):
def test_visualization_dependency_tree_highly_nonprojective(en_vocab):
"""Test a highly non-projective tree (colloquial Polish)."""
doc = Doc(
en_vocab,
@ -204,3 +207,337 @@ def test_dependency_tree_highly_nonprojective(en_vocab):
]
def test_visualization_get_entity_native_attribute_int(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
assert Visualizer().get_entity(doc[2], "head.i") == "3"
def test_visualization_get_entity_native_attribute_str(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
assert Visualizer().get_entity(doc[2], "dep_") == "dep"
def test_visualization_get_entity_colors(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
assert (
Visualizer().get_entity(
doc[2],
"dep_",
value_dependent_fg_colors={"dep": 2},
value_dependent_bg_colors={"dep": 11},
)
== "\x1b[38;5;2;48;5;11mdep\x1b[0m"
if supports_ansi
else "dep"
)
def test_visualization_get_entity_colors_only_fg(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
assert (
Visualizer().get_entity(doc[2], "dep_", value_dependent_fg_colors={"dep": 2})
== "\x1b[38;5;2mdep\x1b[0m"
if supports_ansi
else "dep"
)
def test_visualization_get_entity_colors_only_bg(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
assert (
Visualizer().get_entity(doc[2], "dep_", value_dependent_bg_colors={"dep": 11})
== "\x1b[48;5;11mdep\x1b[0m"
if supports_ansi
else "dep"
)
def test_visualization_get_entity_native_attribute_missing(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
with pytest.raises(AttributeError):
Visualizer().get_entity(doc[2], "depp")
def test_visualization_get_entity_custom_attribute_str(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
Token.set_extension("test", default="tested", force=True)
assert Visualizer().get_entity(doc[2], "_.test") == "tested"
def test_visualization_get_entity_nested_custom_attribute_str(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
class Test:
def __init__(self):
self.inner_test = "tested"
Token.set_extension("test", default=Test(), force=True)
assert Visualizer().get_entity(doc[2], "_.test.inner_test") == "tested"
def test_visualization_get_entity_custom_attribute_missing(en_vocab):
doc = Doc(
en_vocab,
words=[
"I",
"saw",
"a",
"horse",
"yesterday",
"that",
"was",
"injured",
".",
],
heads=[1, None, 3, 1, 1, 7, 7, 3, 1],
deps=["dep"] * 9,
)
with pytest.raises(AttributeError):
Visualizer().get_entity(doc[2], "_.depp")
def test_visualization_minimal_render_table_one_sentence(
fully_featured_doc_one_sentence,
):
formats = [
AttributeFormat("tree_left"),
AttributeFormat("dep_"),
AttributeFormat("text"),
AttributeFormat("lemma_"),
AttributeFormat("pos_"),
AttributeFormat("tag_"),
AttributeFormat("morph"),
AttributeFormat("ent_type_"),
]
assert (
Visualizer().render_table(fully_featured_doc_one_sentence, formats).strip()
== """
> poss Sarah sarah PROPN NNP NounType=prop|Number=sing PERSON
> case 's 's PART POS Poss=yes
> nsubj sister sister NOUN NN Number=sing
ROOT flew fly VERB VBD Tense=past|VerbForm=fin
> prep to to ADP IN
> compound Silicon silicon PROPN NNP NounType=prop|Number=sing GPE
> pobj Valley valley PROPN NNP NounType=prop|Number=sing GPE
> prep via via ADP IN
> pobj London london PROPN NNP NounType=prop|Number=sing GPE
> punct . . PUNCT . PunctType=peri
""".strip()
)
def test_visualization_minimal_render_table_two_sentences(
fully_featured_doc_two_sentences,
):
formats = [
AttributeFormat("tree_left"),
AttributeFormat("dep_"),
AttributeFormat("text"),
AttributeFormat("lemma_"),
AttributeFormat("pos_"),
AttributeFormat("tag_"),
AttributeFormat("morph"),
AttributeFormat("ent_type_"),
]
assert (
Visualizer().render_table(fully_featured_doc_two_sentences, formats).strip()
== """
> poss Sarah sarah PROPN NNP NounType=prop|Number=sing PERSON
> case 's 's PART POS Poss=yes
> nsubj sister sister NOUN NN Number=sing
ROOT flew fly VERB VBD Tense=past|VerbForm=fin
> prep to to ADP IN
> compound Silicon silicon PROPN NNP NounType=prop|Number=sing GPE
> pobj Valley valley PROPN NNP NounType=prop|Number=sing GPE
> prep via via ADP IN
> pobj London london PROPN NNP NounType=prop|Number=sing GPE
> punct . . PUNCT . PunctType=peri
> nsubj She she PRON PRP Case=Nom|Gender=Fem|Number=Sing|Person=3|PronType=Prs
ROOT loved love VERB VBD Tense=Past|VerbForm=Fin
> dobj it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs
> punct . . PUNCT . PunctType=peri
""".strip()
)
def test_visualization_rich_render_table_one_sentence(
fully_featured_doc_one_sentence,
):
formats = [
AttributeFormat("tree_left", name="tree", aligns="r", fg_color=2),
AttributeFormat("dep_", name="dep", fg_color=2),
AttributeFormat("i", name="index", aligns="r"),
AttributeFormat("text", name="text"),
AttributeFormat("lemma_", name="lemma"),
AttributeFormat("pos_", name="pos", fg_color=100),
AttributeFormat("tag_", name="tag", fg_color=100),
AttributeFormat("morph", name="morph", fg_color=100, max_width=15),
AttributeFormat(
"ent_type_",
name="ent",
fg_color=196,
value_dependent_fg_colors={"PERSON": 50},
value_dependent_bg_colors={"PERSON": 12},
),
]
assert (
Visualizer().render_table(fully_featured_doc_one_sentence, formats)
== "\n\x1b[38;5;2m tree\x1b[0m \x1b[38;5;2mdep \x1b[0m index text lemma \x1b[38;5;100mpos \x1b[0m \x1b[38;5;100mtag\x1b[0m \x1b[38;5;100mmorph \x1b[0m \x1b[38;5;196ment \x1b[0m\n\x1b[38;5;2m------\x1b[0m \x1b[38;5;2m--------\x1b[0m ----- ------- ------- \x1b[38;5;100m-----\x1b[0m \x1b[38;5;100m---\x1b[0m \x1b[38;5;100m---------------\x1b[0m \x1b[38;5;196m------\x1b[0m\n\x1b[38;5;2m ╔>╔═\x1b[0m \x1b[38;5;2mposs \x1b[0m 0 Sarah sarah \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196m\x1b[38;5;50;48;5;12mPERSON\x1b[0m\x1b[0m\n\x1b[38;5;2m ║ ╚>\x1b[0m \x1b[38;5;2mcase \x1b[0m 1 's 's \x1b[38;5;100mPART \x1b[0m \x1b[38;5;100mPOS\x1b[0m \x1b[38;5;100mPoss=yes \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╔>╚═══\x1b[0m \x1b[38;5;2mnsubj \x1b[0m 2 sister sister \x1b[38;5;100mNOUN \x1b[0m \x1b[38;5;100mNN \x1b[0m \x1b[38;5;100mNumber=sing \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╠═════\x1b[0m \x1b[38;5;2mROOT \x1b[0m 3 flew fly \x1b[38;5;100mVERB \x1b[0m \x1b[38;5;100mVBD\x1b[0m \x1b[38;5;100mTense=past|Verb\x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╠>╔═══\x1b[0m \x1b[38;5;2mprep \x1b[0m 4 to to \x1b[38;5;100mADP \x1b[0m \x1b[38;5;100mIN \x1b[0m \x1b[38;5;100m \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m║ ║ ╔>\x1b[0m \x1b[38;5;2mcompound\x1b[0m 5 Silicon silicon \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m║ ╚>╚═\x1b[0m \x1b[38;5;2mpobj \x1b[0m 6 Valley valley \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m╠══>╔═\x1b[0m \x1b[38;5;2mprep \x1b[0m 7 via via \x1b[38;5;100mADP \x1b[0m \x1b[38;5;100mIN \x1b[0m \x1b[38;5;100m \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m║ ╚>\x1b[0m \x1b[38;5;2mpobj \x1b[0m 8 London london \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m╚════>\x1b[0m \x1b[38;5;2mpunct \x1b[0m 9 . . \x1b[38;5;100mPUNCT\x1b[0m \x1b[38;5;100m. \x1b[0m \x1b[38;5;100mPunctType=peri \x1b[0m \x1b[38;5;196m \x1b[0m\n\n"
if supports_ansi
else "\n tree dep index text lemma pos tag morph ent \n------ -------- ----- ------- ------- ----- --- ------------------------- ------\n ╔>╔═ poss 0 Sarah sarah PROPN NNP NounType=prop|Number=sing PERSON\n ║ ╚> case 1 's 's PART POS Poss=yes \n╔>╚═══ nsubj 2 sister sister NOUN NN Number=sing \n╠═════ ROOT 3 flew fly VERB VBD Tense=past|VerbForm=fin \n╠>╔═══ prep 4 to to ADP IN \n║ ║ ╔> compound 5 Silicon silicon PROPN NNP NounType=prop|Number=sing GPE \n║ ╚>╚═ pobj 6 Valley valley PROPN NNP NounType=prop|Number=sing GPE \n╠══>╔═ prep 7 via via ADP IN \n║ ╚> pobj 8 London london PROPN NNP NounType=prop|Number=sing GPE \n╚════> punct 9 . . PUNCT . PunctType=peri \n\n"
)
def test_visualization_rich_render_table_two_sentences(
fully_featured_doc_two_sentences,
):
formats = [
AttributeFormat("tree_left", name="tree", aligns="r", fg_color=2),
AttributeFormat("dep_", name="dep", fg_color=2),
AttributeFormat("i", name="index", aligns="r"),
AttributeFormat("text", name="text"),
AttributeFormat("lemma_", name="lemma"),
AttributeFormat("pos_", name="pos", fg_color=100),
AttributeFormat("tag_", name="tag", fg_color=100),
AttributeFormat("morph", name="morph", fg_color=100, max_width=15),
AttributeFormat(
"ent_type_",
name="ent",
fg_color=196,
value_dependent_fg_colors={"PERSON": 50},
value_dependent_bg_colors={"PERSON": 12},
),
]
assert (
Visualizer().render_table(fully_featured_doc_two_sentences, formats)
== "\n\x1b[38;5;2m tree\x1b[0m \x1b[38;5;2mdep \x1b[0m index text lemma \x1b[38;5;100mpos \x1b[0m \x1b[38;5;100mtag\x1b[0m \x1b[38;5;100mmorph \x1b[0m \x1b[38;5;196ment \x1b[0m\n\x1b[38;5;2m------\x1b[0m \x1b[38;5;2m--------\x1b[0m ----- ------- ------- \x1b[38;5;100m-----\x1b[0m \x1b[38;5;100m---\x1b[0m \x1b[38;5;100m---------------\x1b[0m \x1b[38;5;196m------\x1b[0m\n\x1b[38;5;2m ╔>╔═\x1b[0m \x1b[38;5;2mposs \x1b[0m 0 Sarah sarah \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196m\x1b[38;5;50;48;5;12mPERSON\x1b[0m\x1b[0m\n\x1b[38;5;2m ║ ╚>\x1b[0m \x1b[38;5;2mcase \x1b[0m 1 's 's \x1b[38;5;100mPART \x1b[0m \x1b[38;5;100mPOS\x1b[0m \x1b[38;5;100mPoss=yes \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╔>╚═══\x1b[0m \x1b[38;5;2mnsubj \x1b[0m 2 sister sister \x1b[38;5;100mNOUN \x1b[0m \x1b[38;5;100mNN \x1b[0m \x1b[38;5;100mNumber=sing \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╠═════\x1b[0m \x1b[38;5;2mROOT \x1b[0m 3 flew fly \x1b[38;5;100mVERB \x1b[0m \x1b[38;5;100mVBD\x1b[0m \x1b[38;5;100mTense=past|Verb\x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m╠>╔═══\x1b[0m \x1b[38;5;2mprep \x1b[0m 4 to to \x1b[38;5;100mADP \x1b[0m \x1b[38;5;100mIN \x1b[0m \x1b[38;5;100m \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m║ ║ ╔>\x1b[0m \x1b[38;5;2mcompound\x1b[0m 5 Silicon silicon \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m║ ╚>╚═\x1b[0m \x1b[38;5;2mpobj \x1b[0m 6 Valley valley \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m╠══>╔═\x1b[0m \x1b[38;5;2mprep \x1b[0m 7 via via \x1b[38;5;100mADP \x1b[0m \x1b[38;5;100mIN \x1b[0m \x1b[38;5;100m \x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m║ ╚>\x1b[0m \x1b[38;5;2mpobj \x1b[0m 8 London london \x1b[38;5;100mPROPN\x1b[0m \x1b[38;5;100mNNP\x1b[0m \x1b[38;5;100mNounType=prop|N\x1b[0m \x1b[38;5;196mGPE \x1b[0m\n\x1b[38;5;2m╚════>\x1b[0m \x1b[38;5;2mpunct \x1b[0m 9 . . \x1b[38;5;100mPUNCT\x1b[0m \x1b[38;5;100m. \x1b[0m \x1b[38;5;100mPunctType=peri \x1b[0m \x1b[38;5;196m \x1b[0m\n\n\n\x1b[38;5;2mtree\x1b[0m \x1b[38;5;2mdep \x1b[0m index text lemma \x1b[38;5;100mpos \x1b[0m \x1b[38;5;100mtag\x1b[0m \x1b[38;5;100mmorph \x1b[0m \x1b[38;5;196ment\x1b[0m\n\x1b[38;5;2m----\x1b[0m \x1b[38;5;2m-----\x1b[0m ----- ----- ----- \x1b[38;5;100m-----\x1b[0m \x1b[38;5;100m---\x1b[0m \x1b[38;5;100m---------------\x1b[0m \x1b[38;5;196m---\x1b[0m\n\x1b[38;5;2m ╔>\x1b[0m \x1b[38;5;2mnsubj\x1b[0m 10 She she \x1b[38;5;100mPRON \x1b[0m \x1b[38;5;100mPRP\x1b[0m \x1b[38;5;100mCase=Nom|Gender\x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m ╠═\x1b[0m \x1b[38;5;2mROOT \x1b[0m 11 loved love \x1b[38;5;100mVERB \x1b[0m \x1b[38;5;100mVBD\x1b[0m \x1b[38;5;100mTense=Past|Verb\x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m ╠>\x1b[0m \x1b[38;5;2mdobj \x1b[0m 12 it it \x1b[38;5;100mPRON \x1b[0m \x1b[38;5;100mPRP\x1b[0m \x1b[38;5;100mCase=Acc|Gender\x1b[0m \x1b[38;5;196m \x1b[0m\n\x1b[38;5;2m ╚>\x1b[0m \x1b[38;5;2mpunct\x1b[0m 13 . . \x1b[38;5;100mPUNCT\x1b[0m \x1b[38;5;100m. \x1b[0m \x1b[38;5;100mPunctType=peri \x1b[0m \x1b[38;5;196m \x1b[0m\n\n"
if supports_ansi
else "\n tree dep index text lemma pos tag morph ent \n------ -------- ----- ------- ------- ----- --- ------------------------- ------\n ╔>╔═ poss 0 Sarah sarah PROPN NNP NounType=prop|Number=sing PERSON\n ║ ╚> case 1 's 's PART POS Poss=yes \n╔>╚═══ nsubj 2 sister sister NOUN NN Number=sing \n╠═════ ROOT 3 flew fly VERB VBD Tense=past|VerbForm=fin \n╠>╔═══ prep 4 to to ADP IN \n║ ║ ╔> compound 5 Silicon silicon PROPN NNP NounType=prop|Number=sing GPE \n║ ╚>╚═ pobj 6 Valley valley PROPN NNP NounType=prop|Number=sing GPE \n╠══>╔═ prep 7 via via ADP IN \n║ ╚> pobj 8 London london PROPN NNP NounType=prop|Number=sing GPE \n╚════> punct 9 . . PUNCT . PunctType=peri \n\n\ntree dep index text lemma pos tag morph ent\n---- ----- ----- ----- ----- ----- --- ------------------------------------------------------ ---\n ╔> nsubj 10 She she PRON PRP Case=Nom|Gender=Fem|Number=Sing|Person=3|PronType=Prs \n ╠═ ROOT 11 loved love VERB VBD Tense=Past|VerbForm=Fin \n ╠> dobj 12 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs \n ╚> punct 13 . . PUNCT . PunctType=peri \n\n"
)

View File

@ -1,7 +1,34 @@
from os import linesep, truncate
from typing import Union
import wasabi
from spacy.tests.lang.ko.test_tokenizer import FULL_TAG_TESTS
from spacy.tokens import Span
from spacy.tokens import Span, Token, Doc
from spacy.util import working_dir
class AttributeFormat:
def __init__(
self,
attribute: str,
*,
name: str = "",
aligns: str = "l",
max_width: int = None,
fg_color: Union[str, int] = None,
bg_color: Union[str, int] = None,
value_dependent_fg_colors: dict[str, Union[str, int]] = None,
value_dependent_bg_colors: dict[str, Union[str, int]] = None,
):
self.attribute = attribute
self.name = name
self.aligns = aligns
self.max_width = max_width
self.fg_color = fg_color
self.bg_color = bg_color
self.value_dependent_fg_colors = value_dependent_fg_colors
self.value_dependent_bg_colors = value_dependent_bg_colors
SPACE = 0
HALF_HORIZONTAL_LINE = 1 # the half is the half further away from the root
FULL_HORIZONTAL_LINE = 3
@ -37,12 +64,11 @@ ROOT_LEFT_CHARS = {
}
class TableColumn:
def __init__(self, entity: str, width: int, overflow_strategy: str = "truncate"):
pass
class Visualizer:
def __init__(self):
self.printer = wasabi.Printer(no_print=True)
@staticmethod
def render_dependency_tree(sent: Span, root_right: bool) -> list[str]:
"""
@ -65,6 +91,17 @@ class Visualizer:
else token.head.i - sent.start
for token in sent
]
# Check there are no head references outside the sentence
assert (
len(
[
head
for head in heads
if head is not None and (head < 0 or head > sent.end - sent.start)
]
)
== 0
)
children_lists = [[] for _ in range(sent.end - sent.start)]
for child, head in enumerate(heads):
if head is not None:
@ -257,3 +294,85 @@ class Visualizer:
)[::-1]
for vertical_position in range(sent.end - sent.start)
]
def get_entity(
self,
token: Token,
entity_name: str,
*,
value_dependent_fg_colors: dict[str : Union[str, int]] = None,
value_dependent_bg_colors: dict[str : Union[str, int]] = None,
truncate_at_width: int = None
) -> str:
obj = token
parts = entity_name.split(".")
for part in parts[:-1]:
obj = getattr(obj, part)
value = str(getattr(obj, parts[-1]))
if truncate_at_width is not None:
value = value[:truncate_at_width]
fg_color = value_dependent_fg_colors.get(value, None) if value_dependent_fg_colors is not None else None
bg_color = value_dependent_bg_colors.get(value, None) if value_dependent_bg_colors is not None else None
if fg_color is not None or bg_color is not None:
value = self.printer.text(value, color=fg_color, bg_color=bg_color)
return value
def render_table(
self, doc: Doc, columns: list[AttributeFormat], spacing: int = 3
) -> str:
return_string = ""
for sent in doc.sents:
if "tree_right" in (c.attribute for c in columns):
tree_right = self.render_dependency_tree(sent, True)
if "tree_left" in (c.attribute for c in columns):
tree_left = self.render_dependency_tree(sent, False)
widths = []
for column in columns:
# get the values without any color codes
if column.attribute == 'tree_left':
width = len(tree_left[0])
elif column.attribute == 'tree_right':
width = len(tree_right[0])
else:
width = max(len(self.get_entity(token, column.attribute)) for token in sent)
if column.max_width is not None:
width = min(width, column.max_width)
width = max(width, len(column.name))
widths.append(width)
data = [
[
tree_right[token_index]
if column.attribute == "tree_right"
else tree_left[token_index]
if column.attribute == "tree_left"
else self.get_entity(
token,
column.attribute,
value_dependent_fg_colors=column.value_dependent_fg_colors,
value_dependent_bg_colors=column.value_dependent_bg_colors,
truncate_at_width=widths[column_index]
)
for column_index, column in enumerate(columns)
]
for token_index, token in enumerate(sent)
]
if len([1 for c in columns if len(c.name) > 0]) > 0:
header = [c.name for c in columns]
else:
header = None
aligns = [c.aligns for c in columns]
fg_colors = [c.fg_color for c in columns]
bg_colors = [c.bg_color for c in columns]
return_string += (
wasabi.table(
data,
header=header,
divider=True,
aligns=aligns,
widths=widths,
fg_colors=fg_colors,
bg_colors=bg_colors,
)
+ linesep
)
return return_string