diff --git a/netlify.toml b/netlify.toml index ddcd0ca6c..27a15fa25 100644 --- a/netlify.toml +++ b/netlify.toml @@ -55,6 +55,7 @@ redirects = [ {from = "/models/comparison", to = "/models", force = true}, {from = "/api/#section-cython", to = "/api/cython", force = true}, {from = "/api/#cython", to = "/api/cython", force = true}, + {from = "/api/architectures#TextCatCNN", to = "/api/legacy#TextCatCNN_v2", force = true}, {from = "/api/sentencesegmenter", to="/api/sentencizer"}, {from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true}, {from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true}, diff --git a/website/docs/api/architectures.mdx b/website/docs/api/architectures.mdx index 9447ca116..643d66140 100644 --- a/website/docs/api/architectures.mdx +++ b/website/docs/api/architectures.mdx @@ -1018,49 +1018,6 @@ but used an internal `tok2vec` instead of taking it as argument: -### spacy.TextCatCNN.v2 {id="TextCatCNN"} - -> #### Example Config -> -> ```ini -> [model] -> @architectures = "spacy.TextCatCNN.v2" -> exclusive_classes = false -> nO = null -> -> [model.tok2vec] -> @architectures = "spacy.HashEmbedCNN.v2" -> pretrained_vectors = null -> width = 96 -> depth = 4 -> embed_size = 2000 -> window_size = 1 -> maxout_pieces = 3 -> subword_features = true -> ``` - -A neural network model where token vectors are calculated using a CNN. The -vectors are mean pooled and used as features in a feed-forward network. This -architecture is usually less accurate than the ensemble, but runs faster. - -This model is identical to [TexCatReduce.v1](#TextCatReduce) with -`use_reduce_mean=true`, `use_reduce_first=false` and `use_reduce_max=false`. - -| Name | Description | -| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ | -| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ | -| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ | -| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ | - - - -[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was -not yet resizable. Since v2, new labels can be added to this component, even -after training. - - - ### spacy.TextCatBOW.v3 {id="TextCatBOW"} > #### Example Config diff --git a/website/docs/api/legacy.mdx b/website/docs/api/legacy.mdx index 32111ce92..5fdc791c2 100644 --- a/website/docs/api/legacy.mdx +++ b/website/docs/api/legacy.mdx @@ -162,7 +162,10 @@ network has an internal CNN Tok2Vec layer and uses attention. Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means that you can add labels to a previously trained textcat. `TextCatCNN` v1 did not -yet support that. +yet support that. `TextCatCNN` has been replaced by the more general +[`TextCatReduce`](/api/architectures#TextCatReduce) layer. `TextCatCNN` is +identical to `TextCatReduce` with `use_reduce_mean=true`, +`use_reduce_first=false` and `use_reduce_max=false`. > #### Example Config > @@ -194,6 +197,51 @@ architecture is usually less accurate than the ensemble, but runs faster. | `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ | | **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ | +### spacy.TextCatCNN.v2 {id="TextCatCNN_v2"} + +> #### Example Config +> +> ```ini +> [model] +> @architectures = "spacy.TextCatCNN.v2" +> exclusive_classes = false +> nO = null +> +> [model.tok2vec] +> @architectures = "spacy.HashEmbedCNN.v2" +> pretrained_vectors = null +> width = 96 +> depth = 4 +> embed_size = 2000 +> window_size = 1 +> maxout_pieces = 3 +> subword_features = true +> ``` + +A neural network model where token vectors are calculated using a CNN. The +vectors are mean pooled and used as features in a feed-forward network. This +architecture is usually less accurate than the ensemble, but runs faster. + +`TextCatCNN` has been replaced by the more general +[`TextCatReduce`](/api/architectures#TextCatReduce) layer. `TextCatCNN` is +identical to `TextCatReduce` with `use_reduce_mean=true`, +`use_reduce_first=false` and `use_reduce_max=false`. + +| Name | Description | +| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ | +| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ | +| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ | +| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ | + + + +[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was +not yet resizable. Since v2, new labels can be added to this component, even +after training. + + + ### spacy.TextCatBOW.v1 {id="TextCatBOW_v1"} Since `spacy.TextCatBOW.v2`, this architecture has become resizable, which means