Add fake batching

The way fake batching works is that the pipeline component calls the
model repeatedly in a loop internally. It feels like this should break
something, but it worked in testing.

Another issue is that this changes the signature of some of the pipeline
functions, though I don't think that's an issue.

Tested with batch size of 2, so more testing is needed, but this is a
start.
This commit is contained in:
Paul O'Leary McCann 2022-03-18 19:46:58 +09:00
parent 1a79d18796
commit a098849112

View File

@ -129,22 +129,24 @@ class CoreferenceResolver(TrainablePipe):
DOCS: https://spacy.io/api/coref#predict (TODO)
"""
scores, idxs = self.model.predict(docs)
# idxs is a list of mentions (start / end idxs)
# each item in scores includes scores and a mapping from scores to mentions
ant_idxs = idxs
#print("DOCS", docs)
out = []
for doc in docs:
scores, idxs = self.model.predict([doc])
# idxs is a list of mentions (start / end idxs)
# each item in scores includes scores and a mapping from scores to mentions
ant_idxs = idxs
# TODO batching
xp = self.model.ops.xp
# TODO batching
xp = self.model.ops.xp
starts = xp.arange(0, len(docs[0]))
ends = xp.arange(0, len(docs[0])) + 1
starts = xp.arange(0, len(doc))
ends = xp.arange(0, len(doc)) + 1
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
out.append(predicted)
clusters_by_doc = [predicted]
return clusters_by_doc
return out
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
@ -203,17 +205,21 @@ class CoreferenceResolver(TrainablePipe):
return losses
set_dropout_rate(self.model, drop)
inputs = [example.predicted for example in examples]
preds, backprop = self.model.begin_update(inputs)
score_matrix, mention_idx = preds
total_loss = 0
loss, d_scores = self.get_loss(examples, score_matrix, mention_idx)
# TODO check shape here
backprop((d_scores, mention_idx))
for eg in examples:
# TODO does this even work?
preds, backprop = self.model.begin_update([eg.predicted])
score_matrix, mention_idx = preds
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
total_loss += loss
# TODO check shape here
backprop((d_scores, mention_idx))
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
losses[self.name] += total_loss
return losses
def rehearse(
@ -288,48 +294,35 @@ class CoreferenceResolver(TrainablePipe):
ops = self.model.ops
xp = ops.xp
offset = 0
gradients = []
total_loss = 0
# TODO change this
# 1. do not handle batching (add it back later)
# 2. don't do index conversion (no mentions, just word indices)
# 3. convert words to spans (if necessary) in gold and predictions
# TODO if there is more than one example, give an error
# (or actually rework this to take multiple things)
example = examples[0]
cscores = score_matrix
cidx = mention_idx
# massage score matrix to be shaped correctly
score_matrix = [(score_matrix, None)]
for example, (cscores, cidx) in zip(examples, score_matrix):
clusters = get_clusters_from_doc(example.reference)
span_idxs = create_head_span_idxs(ops, len(example.predicted))
gscores = create_gold_scores(span_idxs, clusters)
gscores = ops.asarray2f(gscores)
# top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
# now add the placeholder
gold_placeholder = ~top_gscores.any(axis=1).T
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
ll = cscores.shape[0]
hi = offset + ll
# boolean to float
top_gscores = ops.asarray2f(top_gscores)
clusters = get_clusters_from_doc(example.reference)
span_idxs = create_head_span_idxs(ops, len(example.predicted))
gscores = create_gold_scores(span_idxs, clusters)
gscores = ops.asarray2f(gscores)
# top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
# now add the placeholder
gold_placeholder = ~top_gscores.any(axis=1).T
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
log_norm = ops.softmax(cscores, axis=1)
grad = log_norm - log_marg
#gradients.append((grad, cidx))
loss = float((grad**2).sum())
# boolean to float
top_gscores = ops.asarray2f(top_gscores)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
log_norm = ops.softmax(cscores, axis=1)
grad = log_norm - log_marg
gradients.append((grad, cidx))
total_loss += float((grad**2).sum())
offset = hi
# Undo the wrapping
gradients = gradients[0][0]
return total_loss, gradients
return loss, grad
def initialize(
self,