mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Clean up redundant PrecomputableMaxouts class
This commit is contained in:
parent
b00d0a2c97
commit
a17a1b60c7
99
spacy/_ml.py
99
spacy/_ml.py
|
@ -30,8 +30,6 @@ from . import util
|
|||
import numpy
|
||||
import io
|
||||
|
||||
from blis.py import einsum
|
||||
|
||||
# TODO: Unset this once we don't want to support models previous models.
|
||||
import thinc.neural._classes.layernorm
|
||||
thinc.neural._classes.layernorm.set_compat_six_eight(False)
|
||||
|
@ -107,7 +105,9 @@ def _preprocess_doc(docs, drop=0.):
|
|||
def _init_for_precomputed(W, ops):
|
||||
if (W**2).sum() != 0.:
|
||||
return
|
||||
W = W.reshape((W.shape[0] * W.shape[1], W.shape[2]))
|
||||
ops.xavier_uniform_init(W, inplace=True)
|
||||
return W
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
|
@ -116,7 +116,7 @@ def _init_for_precomputed(W, ops):
|
|||
nF=Dimension("Number of features"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nI, obj.nF * obj.nO),
|
||||
lambda obj: (obj.nI, obj.nF, obj.nO),
|
||||
lambda W, ops: _init_for_precomputed(W, ops)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO,)),
|
||||
|
@ -131,7 +131,7 @@ class PrecomputableAffine(Model):
|
|||
self.nF = nF
|
||||
|
||||
@property
|
||||
def nIF(self):
|
||||
def nFI(self):
|
||||
return self.nI * self.nF
|
||||
|
||||
@property
|
||||
|
@ -145,87 +145,34 @@ class PrecomputableAffine(Model):
|
|||
# Yf: (b, f, o)
|
||||
# dY: (b, o)
|
||||
# dYf: (b, f, o)
|
||||
# W: (i, fo)
|
||||
# Yf = numpy.einsum('bi,i_fo->b_fo', X, self.W)
|
||||
Yf = einsum('ab,bc->ac', X, self.W).reshape((nN, self.nF, self.nO))
|
||||
#Yf = self.ops.xp.dot(X, self.W).reshape((nN, self.nF, self.nO))
|
||||
# W: (i, f, o)
|
||||
W = self.W.reshape((self.nI, self.nFO))
|
||||
Yf = self.ops.xp.dot(X, W)
|
||||
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO))
|
||||
#Yf = einsum('ab,bc->ac', X, W)
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
nB = ids.shape[0]
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((nB, self.nIF))
|
||||
|
||||
dW_re = self.d_W.reshape((self.nIF, self.nO))
|
||||
W_re = self.W.reshape((self.nIF, self.nO))
|
||||
# bo,if_o->bif
|
||||
dXf = einsum('ab,cb->ac', dY, W_re)
|
||||
#dXf = self.ops.xp.dot(dY, W_re.T)
|
||||
# b_if,bo->if_o
|
||||
einsum('ab,ac->bc', Xf, dY, out=dW_re)
|
||||
#self.ops.xp.dot(Xf.T, dY, out=dW_re)
|
||||
# bo,fi_o->b_if -> b_fi
|
||||
W_o_fi = self._transpose(self.W, shape=(self.nO, self.nFI))
|
||||
dXf = self.ops.xp.dot(dY, W_o_fi).reshape((Xf.shape[0], self.nF, self.nI))
|
||||
# bo,b_fi->o_fi
|
||||
dW = Xf.reshape((Xf.shape[0], self.nFI))
|
||||
dW = self.ops.xp.dot(Xf.T, dY)
|
||||
dW = dW.reshape((self.nO, self.nF, self.nI))
|
||||
self.d_W += dW.transpose((2, 1, 0))
|
||||
self.d_b += dY.sum(axis=0)
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
dXf = dXf.reshape((nB, self.nI, self.nF))
|
||||
dXf = dXf.transpose((0, 2, 1))
|
||||
return self.ops.xp.ascontiguousarray(dXf)
|
||||
return dXf
|
||||
return Yf, backward
|
||||
|
||||
def _transpose(self, weights, shape):
|
||||
weights = weights.transpose((2, 1, 0))
|
||||
weights = self.ops.xp.ascontiguousarray(weights)
|
||||
return weights.reshape(shape)
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nP=Dimension("Number of pieces"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
||||
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO, obj.nP)),
|
||||
d_W=Gradient("W"),
|
||||
d_b=Gradient("b")
|
||||
)
|
||||
class PrecomputableMaxouts(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nP = nP
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
# X: (b, i)
|
||||
# Yfp: (b, f, o, p)
|
||||
# Xf: (f, b, i)
|
||||
# dYp: (b, o, p)
|
||||
# W: (f, o, p, i)
|
||||
# b: (o, p)
|
||||
|
||||
# bi,opfi->bfop
|
||||
# bop,fopi->bfi
|
||||
# bop,fbi->opfi : fopi
|
||||
|
||||
tensordot = self.ops.xp.tensordot
|
||||
ascontiguous = self.ops.xp.ascontiguousarray
|
||||
|
||||
Yfp = tensordot(X, self.W, axes=[[1], [3]])
|
||||
|
||||
def backward(dYp_ids, sgd=None):
|
||||
dYp, ids = dYp_ids
|
||||
Xf = X[ids]
|
||||
|
||||
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
|
||||
dW = tensordot(dYp, Xf, axes=[[0], [0]])
|
||||
|
||||
self.d_W += dW.transpose((2, 0, 1, 3))
|
||||
self.d_b += dYp.sum(axis=0)
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
return Yfp, backward
|
||||
|
||||
# Thinc's Embed class is a bit broken atm, so drop this here.
|
||||
from thinc import describe
|
||||
|
@ -382,6 +329,8 @@ def reapply(layer, n_times):
|
|||
return wrap(reapply_fwd, layer)
|
||||
|
||||
|
||||
|
||||
|
||||
def asarray(ops, dtype):
|
||||
def forward(X, drop=0.):
|
||||
return ops.asarray(X, dtype=dtype), None
|
||||
|
|
Loading…
Reference in New Issue
Block a user