Merge the parser refactor into v4 (#10940)

* Try to fix doc.copy

* Set dev version

* Make vocab always own lexemes

* Change version

* Add SpanGroups.copy method

* Fix set_annotations during Parser.update

* Fix dict proxy copy

* Upd version

* Fix copying SpanGroups

* Fix set_annotations in parser.update

* Fix parser set_annotations during update

* Revert "Fix parser set_annotations during update"

This reverts commit eb138c89ed.

* Revert "Fix set_annotations in parser.update"

This reverts commit c6df0eafd0.

* Fix set_annotations during parser update

* Inc version

* Handle final states in get_oracle_sequence

* Inc version

* Try to fix parser training

* Inc version

* Fix

* Inc version

* Fix parser oracle

* Inc version

* Inc version

* Fix transition has_gold

* Inc version

* Try to use real histories, not oracle

* Inc version

* Upd parser

* Inc version

* WIP on rewrite parser

* WIP refactor parser

* New progress on parser model refactor

* Prepare to remove parser_model.pyx

* Convert parser from cdef class

* Delete spacy.ml.parser_model

* Delete _precomputable_affine module

* Wire up tb_framework to new parser model

* Wire up parser model

* Uncython ner.pyx and dep_parser.pyx

* Uncython

* Work on parser model

* Support unseen_classes in parser model

* Support unseen classes in parser

* Cleaner handling of unseen classes

* Work through tests

* Keep working through errors

* Keep working through errors

* Work on parser. 15 tests failing

* Xfail beam stuff. 9 failures

* More xfail. 7 failures

* Xfail. 6 failures

* cleanup

* formatting

* fixes

* pass nO through

* Fix empty doc in update

* Hackishly fix resizing. 3 failures

* Fix redundant test. 2 failures

* Add reference version

* black formatting

* Get tests passing with reference implementation

* Fix missing prints

* Add missing file

* Improve indexing on reference implementation

* Get non-reference forward func working

* Start rigging beam back up

* removing redundant tests, cf #8106

* black formatting

* temporarily xfailing issue 4314

* make flake8 happy again

* mypy fixes

* ensure labels are added upon predict

* cleanup remnants from merge conflicts

* Improve unseen label masking

Two changes to speed up masking by ~10%:

- Use a bool array rather than an array of float32.

- Let the mask indicate whether a label was seen, rather than
  unseen. The mask is most frequently used to index scores for
  seen labels. However, since the mask marked unseen labels,
  this required computing an intermittent flipped mask.

* Write moves costs directly into numpy array (#10163)

This avoids elementwise indexing and the allocation of an additional
array.

Gives a ~15% speed improvement when using batch_by_sequence with size
32.

* Temporarily disable ner and rehearse tests

Until rehearse is implemented again in the refactored parser.

* Fix loss serialization issue (#10600)

* Fix loss serialization issue

Serialization of a model fails with:

TypeError: array(738.3855, dtype=float32) is not JSON serializable

Fix this using float conversion.

* Disable CI steps that require spacy.TransitionBasedParser.v2

After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.

* Add back support for beam parsing to the refactored parser (#10633)

* Add back support for beam parsing

Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.

* Use kwarg for beam width

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Avoid implicit default for beam_width and beam_density

* Parser.{beam,greedy}_parse: ensure labels are added

* Remove 'deprecated' comments

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Parser `StateC` optimizations (#10746)

* `StateC`: Optimizations

Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead

* Fix typo

* Replace `set::count` with `set::find`

* Add exception attribute to c'tor

* Remove unused import

* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`

* Merge `cdef` variable declarations and assignments

* Vectorize `example.get_aligned_parses` (#10789)

* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import

* Convert aligned array to lists before returning

* Revert import renaming

* Elide slice arguments when selecting the entire range

* Tagger/morphologizer alignment performance optimizations (#10798)

* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`

* `AlignmentArray`: Use native list as staging buffer for offset calculation

* `example`: Vectorize `get_aligned`

* Hoist inner functions out of `get_aligned`

* Replace inline `if..else` clause in assignment statement

* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays

* `example`: Replace array unique value check with `groupby`

* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`

* `util`: Update `all_equal` docstring

* Explicitly use `int32_t*`

* Restore C CPU inference in the refactored parser (#10747)

* Bring back the C parsing model

The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.

* Use C sgemm provided by the Ops implementation

* Make tb_framework module Cython, merge in C forward implementation

* TransitionModel: raise in backprop returned from forward_cpu

* Re-enable greedy parse test

* Return transition scores when forward_cpu is used

* Apply suggestions from code review

Import `Model` from `thinc.api`

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Use relative imports in tb_framework

* Don't assume a default for beam_width

* We don't have a direct dependency on BLIS anymore

* Rename forwards to _forward_{fallback,greedy_cpu}

* Require thinc >=8.1.0,<8.2.0

* tb_framework: clean up imports

* Fix return type of _get_seen_mask

* Move up _forward_greedy_cpu

* Style fixes.

* Lower thinc lowerbound to 8.1.0.dev0

* Formatting fix

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* Reimplement parser rehearsal function (#10878)

* Reimplement parser rehearsal function

Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:

1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
   the student.

In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:

1. Get the predictions of all parsing steps from the student, along
   with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
   the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.

To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.

* tb_framework: wrap upper_W and upper_b in Linear

Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.

* Add test for TransitionSystem.apply_actions

* Better FIXME marker

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>

* Fixes from Madeesh

* Apply suggestions from Sofie

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Remove useless assignment

Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Rename some identifiers in the parser refactor (#10935)

* Rename _parseC to _parse_batch

* tb_framework: prefix many auxiliary functions with underscore

To clearly state the intent that they are private.

* Rename `lower` to `hidden`, `upper` to `output`

* Parser slow test fixup

We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.

* Remove last vestiges of PrecomputableAffine

This does not exist anymore as a separate layer.

* ner: re-enable sentence boundary checks

* Re-enable test that works now.

* test_ner: make loss test more strict again

* Remove commented line

* Re-enable some more beam parser tests

* Remove unused _forward_reference function

* Update for CBlas changes in Thinc 8.1.0.dev2

Bump thinc dependency to 8.1.0.dev3.

* Remove references to spacy.TransitionBasedParser.{v1,v2}

Since they will not be offered starting with spaCy v4.

* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`

* dont use get_array_module (#11056) (#11293)

Co-authored-by: kadarakos <kadar.akos@gmail.com>

* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)

* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`

* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`

* `mypy` fix

* Update comment

* `conftest`: Expose `register_cython_tests`

* Remove unused import

* Move `argmax` impls to new `_parser_utils` Cython module (#11410)

* Parser does not have to be a cdef class anymore

This also fixes validation of the initialization schema.

* Add back spacy.TransitionBasedParser.v2

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Remove module from setup.py that got added during the merge

* Bring back support for `update_with_oracle_cut_size` (#12086)

* Bring back support for `update_with_oracle_cut_size`

This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.

Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.

Training time 1000 steps on de_core_news_lg:

- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s

* Fix a rename that was missed in #10878.

So that rehearsal tests pass.

* Apply suggestions from @shadeMe

* Use chained conditional

* Test with update_with_oracle_cut_size={0, 1, 5, 100}

And fix a git that occurs with a cut size of 1.

* Fix up some merge fall out

* Update parser distillation for the refactor

In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.

* Add back spacy.TransitionBasedParser.v1 references

- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
This commit is contained in:
Daniël de Kok 2023-01-18 11:27:45 +01:00 committed by GitHub
parent 5e297aa20e
commit a183db3cef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 1282 additions and 1342 deletions

View File

@ -33,12 +33,10 @@ MOD_NAMES = [
"spacy.kb.candidate", "spacy.kb.candidate",
"spacy.kb.kb", "spacy.kb.kb",
"spacy.kb.kb_in_memory", "spacy.kb.kb_in_memory",
"spacy.ml.parser_model", "spacy.ml.tb_framework",
"spacy.morphology", "spacy.morphology",
"spacy.pipeline.dep_parser",
"spacy.pipeline._edit_tree_internals.edit_trees", "spacy.pipeline._edit_tree_internals.edit_trees",
"spacy.pipeline.morphologizer", "spacy.pipeline.morphologizer",
"spacy.pipeline.ner",
"spacy.pipeline.pipe", "spacy.pipeline.pipe",
"spacy.pipeline.trainable_pipe", "spacy.pipeline.trainable_pipe",
"spacy.pipeline.sentencizer", "spacy.pipeline.sentencizer",
@ -46,6 +44,7 @@ MOD_NAMES = [
"spacy.pipeline.tagger", "spacy.pipeline.tagger",
"spacy.pipeline.transition_parser", "spacy.pipeline.transition_parser",
"spacy.pipeline._parser_internals.arc_eager", "spacy.pipeline._parser_internals.arc_eager",
"spacy.pipeline._parser_internals.batch",
"spacy.pipeline._parser_internals.ner", "spacy.pipeline._parser_internals.ner",
"spacy.pipeline._parser_internals.nonproj", "spacy.pipeline._parser_internals.nonproj",
"spacy.pipeline._parser_internals.search", "spacy.pipeline._parser_internals.search",
@ -53,6 +52,7 @@ MOD_NAMES = [
"spacy.pipeline._parser_internals.stateclass", "spacy.pipeline._parser_internals.stateclass",
"spacy.pipeline._parser_internals.transition_system", "spacy.pipeline._parser_internals.transition_system",
"spacy.pipeline._parser_internals._beam_utils", "spacy.pipeline._parser_internals._beam_utils",
"spacy.pipeline._parser_internals._parser_utils",
"spacy.tokenizer", "spacy.tokenizer",
"spacy.training.align", "spacy.training.align",
"spacy.training.gold_io", "spacy.training.gold_io",

View File

@ -87,12 +87,11 @@ grad_factor = 1.0
factory = "parser" factory = "parser"
[components.parser.model] [components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "parser" state_type = "parser"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 128 hidden_width = 128
maxout_pieces = 3 maxout_pieces = 3
use_upper = false
nO = null nO = null
[components.parser.model.tok2vec] [components.parser.model.tok2vec]
@ -108,12 +107,11 @@ grad_factor = 1.0
factory = "ner" factory = "ner"
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "ner" state_type = "ner"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 64 hidden_width = 64
maxout_pieces = 2 maxout_pieces = 2
use_upper = false
nO = null nO = null
[components.ner.model.tok2vec] [components.ner.model.tok2vec]
@ -314,12 +312,11 @@ width = ${components.tok2vec.model.encode.width}
factory = "parser" factory = "parser"
[components.parser.model] [components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "parser" state_type = "parser"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 128 hidden_width = 128
maxout_pieces = 3 maxout_pieces = 3
use_upper = true
nO = null nO = null
[components.parser.model.tok2vec] [components.parser.model.tok2vec]
@ -332,12 +329,11 @@ width = ${components.tok2vec.model.encode.width}
factory = "ner" factory = "ner"
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "ner" state_type = "ner"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 64 hidden_width = 64
maxout_pieces = 2 maxout_pieces = 2
use_upper = true
nO = null nO = null
[components.ner.model.tok2vec] [components.ner.model.tok2vec]

View File

@ -209,6 +209,8 @@ class Warnings(metaclass=ErrorsWithCodes):
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.") "`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.") W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
W400 = ("`use_upper=False` is ignored, the upper layer is always enabled")
class Errors(metaclass=ErrorsWithCodes): class Errors(metaclass=ErrorsWithCodes):
E001 = ("No component '{name}' found in pipeline. Available names: {opts}") E001 = ("No component '{name}' found in pipeline. Available names: {opts}")
@ -958,6 +960,7 @@ class Errors(metaclass=ErrorsWithCodes):
E4002 = ("Pipe '{name}' requires a teacher pipe for distillation.") E4002 = ("Pipe '{name}' requires a teacher pipe for distillation.")
E4003 = ("Training examples for distillation must have the exact same tokens in the " E4003 = ("Training examples for distillation must have the exact same tokens in the "
"reference and predicted docs.") "reference and predicted docs.")
E4004 = ("Backprop is not supported when is_train is not set.")
# fmt: on # fmt: on

View File

@ -1,164 +0,0 @@
from thinc.api import Model, normal_init
from ..util import registry
@registry.layers("spacy.PrecomputableAffine.v1")
def PrecomputableAffine(nO, nI, nF, nP, dropout=0.1):
model = Model(
"precomputable_affine",
forward,
init=init,
dims={"nO": nO, "nI": nI, "nF": nF, "nP": nP},
params={"W": None, "b": None, "pad": None},
attrs={"dropout_rate": dropout},
)
return model
def forward(model, X, is_train):
nF = model.get_dim("nF")
nO = model.get_dim("nO")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.get_param("W")
# Preallocate array for layer output, including padding.
Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False)
model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:])
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
# Set padding. Padding has shape (1, nF, nO, nP). Unfortunately, we cannot
# change its shape to (nF, nO, nP) without breaking existing models. So
# we'll squeeze the first dimension here.
Yf[0] = model.ops.xp.squeeze(model.get_param("pad"), 0)
def backward(dY_ids):
# This backprop is particularly tricky, because we get back a different
# thing from what we put out. We put out an array of shape:
# (nB, nF, nO, nP), and get back:
# (nB, nO, nP) and ids (nB, nF)
# The ids tell us the values of nF, so we would have:
#
# dYf = zeros((nB, nF, nO, nP))
# for b in range(nB):
# for f in range(nF):
# dYf[b, ids[b, f]] += dY[b]
#
# However, we avoid building that array for efficiency -- and just pass
# in the indices.
dY, ids = dY_ids
assert dY.ndim == 3
assert dY.shape[1] == nO, dY.shape
assert dY.shape[2] == nP, dY.shape
# nB = dY.shape[0]
model.inc_grad("pad", _backprop_precomputable_affine_padding(model, dY, ids))
Xf = X[ids]
Xf = Xf.reshape((Xf.shape[0], nF * nI))
model.inc_grad("b", dY.sum(axis=0))
dY = dY.reshape((dY.shape[0], nO * nP))
Wopfi = W.transpose((1, 2, 0, 3))
Wopfi = Wopfi.reshape((nO * nP, nF * nI))
dXf = model.ops.gemm(dY.reshape((dY.shape[0], nO * nP)), Wopfi)
dWopfi = model.ops.gemm(dY, Xf, trans1=True)
dWopfi = dWopfi.reshape((nO, nP, nF, nI))
# (o, p, f, i) --> (f, o, p, i)
dWopfi = dWopfi.transpose((2, 0, 1, 3))
model.inc_grad("W", dWopfi)
return dXf.reshape((dXf.shape[0], nF, nI))
return Yf, backward
def _backprop_precomputable_affine_padding(model, dY, ids):
nB = dY.shape[0]
nF = model.get_dim("nF")
nP = model.get_dim("nP")
nO = model.get_dim("nO")
# Backprop the "padding", used as a filler for missing values.
# Values that are missing are set to -1, and each state vector could
# have multiple missing values. The padding has different values for
# different missing features. The gradient of the padding vector is:
#
# for b in range(nB):
# for f in range(nF):
# if ids[b, f] < 0:
# d_pad[f] += dY[b]
#
# Which can be rewritten as:
#
# (ids < 0).T @ dY
mask = model.ops.asarray(ids < 0, dtype="f")
d_pad = model.ops.gemm(mask, dY.reshape(nB, nO * nP), trans1=True)
return d_pad.reshape((1, nF, nO, nP))
def init(model, X=None, Y=None):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
if model.has_param("W") and model.get_param("W").any():
return
nF = model.get_dim("nF")
nO = model.get_dim("nO")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.ops.alloc4f(nF, nO, nP, nI)
b = model.ops.alloc2f(nO, nP)
pad = model.ops.alloc4f(1, nF, nO, nP)
ops = model.ops
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
pad = normal_init(ops, pad.shape, mean=1.0)
model.set_param("W", W)
model.set_param("b", b)
model.set_param("pad", pad)
ids = ops.alloc((5000, nF), dtype="f")
ids += ops.xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.alloc((5000, nI), dtype="f")
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens = model.predict(tokvecs[:-1]) # (nW, f, o, p)
vectors = model.ops.alloc((ids.shape[0], nO * nP), dtype="f")
# need nS vectors
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nO * nP))
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors = vectors.reshape((vectors.shape[0], nO, nP))
vectors += b
vectors = model.ops.asarray(vectors)
if nP >= 2:
return model.ops.maxout(vectors)[0]
else:
return vectors * (vectors >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
W = model.get_param("W").copy()
b = model.get_param("b").copy()
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
W /= model.ops.xp.sqrt(var)
model.set_param("W", W)
elif abs(mean) >= tol_mean:
b -= mean
model.set_param("b", b)
else:
break

View File

@ -1,17 +1,20 @@
from typing import Optional, List, cast from typing import Optional, List, Tuple, Any
from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops
from thinc.types import Floats2d from thinc.types import Floats2d
from thinc.api import Model
import warnings
from ...errors import Errors from ...errors import Errors, Warnings
from ...compat import Literal from ...compat import Literal
from ...util import registry from ...util import registry
from .._precomputable_affine import PrecomputableAffine
from ..tb_framework import TransitionModel from ..tb_framework import TransitionModel
from ...tokens import Doc from ...tokens.doc import Doc
TransitionSystem = Any # TODO
State = Any # TODO
@registry.architectures("spacy.TransitionBasedParser.v2") @registry.architectures.register("spacy.TransitionBasedParser.v2")
def build_tb_parser_model( def transition_parser_v2(
tok2vec: Model[List[Doc], List[Floats2d]], tok2vec: Model[List[Doc], List[Floats2d]],
state_type: Literal["parser", "ner"], state_type: Literal["parser", "ner"],
extra_state_tokens: bool, extra_state_tokens: bool,
@ -19,6 +22,46 @@ def build_tb_parser_model(
maxout_pieces: int, maxout_pieces: int,
use_upper: bool, use_upper: bool,
nO: Optional[int] = None, nO: Optional[int] = None,
) -> Model:
if not use_upper:
warnings.warn(Warnings.W400)
return build_tb_parser_model(
tok2vec,
state_type,
extra_state_tokens,
hidden_width,
maxout_pieces,
nO=nO,
)
@registry.architectures.register("spacy.TransitionBasedParser.v3")
def transition_parser_v3(
tok2vec: Model[List[Doc], List[Floats2d]],
state_type: Literal["parser", "ner"],
extra_state_tokens: bool,
hidden_width: int,
maxout_pieces: int,
nO: Optional[int] = None,
) -> Model:
return build_tb_parser_model(
tok2vec,
state_type,
extra_state_tokens,
hidden_width,
maxout_pieces,
nO=nO,
)
def build_tb_parser_model(
tok2vec: Model[List[Doc], List[Floats2d]],
state_type: Literal["parser", "ner"],
extra_state_tokens: bool,
hidden_width: int,
maxout_pieces: int,
nO: Optional[int] = None,
) -> Model: ) -> Model:
""" """
Build a transition-based parser model. Can apply to NER or dependency-parsing. Build a transition-based parser model. Can apply to NER or dependency-parsing.
@ -51,14 +94,7 @@ def build_tb_parser_model(
feature sets (for the NER) or 13 (for the parser). feature sets (for the NER) or 13 (for the parser).
hidden_width (int): The width of the hidden layer. hidden_width (int): The width of the hidden layer.
maxout_pieces (int): How many pieces to use in the state prediction layer. maxout_pieces (int): How many pieces to use in the state prediction layer.
Recommended values are 1, 2 or 3. If 1, the maxout non-linearity Recommended values are 1, 2 or 3.
is replaced with a ReLu non-linearity if use_upper=True, and no
non-linearity if use_upper=False.
use_upper (bool): Whether to use an additional hidden layer after the state
vector in order to predict the action scores. It is recommended to set
this to False for large pretrained models such as transformers, and True
for smaller networks. The upper layer is computed on CPU, which becomes
a bottleneck on larger GPU-based models, where it's also less necessary.
nO (int or None): The number of actions the model will predict between. nO (int or None): The number of actions the model will predict between.
Usually inferred from data at the beginning of training, or loaded from Usually inferred from data at the beginning of training, or loaded from
disk. disk.
@ -69,106 +105,11 @@ def build_tb_parser_model(
nr_feature_tokens = 6 if extra_state_tokens else 3 nr_feature_tokens = 6 if extra_state_tokens else 3
else: else:
raise ValueError(Errors.E917.format(value=state_type)) raise ValueError(Errors.E917.format(value=state_type))
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None return TransitionModel(
tok2vec = chain( tok2vec=tok2vec,
tok2vec, state_tokens=nr_feature_tokens,
list2array(), hidden_width=hidden_width,
Linear(hidden_width, t2v_width), maxout_pieces=maxout_pieces,
nO=nO,
unseen_classes=set(),
) )
tok2vec.set_dim("nO", hidden_width)
lower = _define_lower(
nO=hidden_width if use_upper else nO,
nF=nr_feature_tokens,
nI=tok2vec.get_dim("nO"),
nP=maxout_pieces,
)
upper = None
if use_upper:
with use_ops("cpu"):
# Initialize weights at zero, as it's a classification layer.
upper = _define_upper(nO=nO, nI=None)
return TransitionModel(tok2vec, lower, upper, resize_output)
def _define_upper(nO, nI):
return Linear(nO=nO, nI=nI, init_W=zero_init)
def _define_lower(nO, nF, nI, nP):
return PrecomputableAffine(nO=nO, nF=nF, nI=nI, nP=nP)
def resize_output(model, new_nO):
if model.attrs["has_upper"]:
return _resize_upper(model, new_nO)
return _resize_lower(model, new_nO)
def _resize_upper(model, new_nO):
upper = model.get_ref("upper")
if upper.has_dim("nO") is None:
upper.set_dim("nO", new_nO)
return model
elif new_nO == upper.get_dim("nO"):
return model
smaller = upper
nI = smaller.maybe_get_dim("nI")
with use_ops("cpu"):
larger = _define_upper(nO=new_nO, nI=nI)
# it could be that the model is not initialized yet, then skip this bit
if smaller.has_param("W"):
larger_W = larger.ops.alloc2f(new_nO, nI)
larger_b = larger.ops.alloc1f(new_nO)
smaller_W = smaller.get_param("W")
smaller_b = smaller.get_param("b")
# Weights are stored in (nr_out, nr_in) format, so we're basically
# just adding rows here.
if smaller.has_dim("nO"):
old_nO = smaller.get_dim("nO")
larger_W[:old_nO] = smaller_W
larger_b[:old_nO] = smaller_b
for i in range(old_nO, new_nO):
model.attrs["unseen_classes"].add(i)
larger.set_param("W", larger_W)
larger.set_param("b", larger_b)
model._layers[-1] = larger
model.set_ref("upper", larger)
return model
def _resize_lower(model, new_nO):
lower = model.get_ref("lower")
if lower.has_dim("nO") is None:
lower.set_dim("nO", new_nO)
return model
smaller = lower
nI = smaller.maybe_get_dim("nI")
nF = smaller.maybe_get_dim("nF")
nP = smaller.maybe_get_dim("nP")
larger = _define_lower(nO=new_nO, nI=nI, nF=nF, nP=nP)
# it could be that the model is not initialized yet, then skip this bit
if smaller.has_param("W"):
larger_W = larger.ops.alloc4f(nF, new_nO, nP, nI)
larger_b = larger.ops.alloc2f(new_nO, nP)
larger_pad = larger.ops.alloc4f(1, nF, new_nO, nP)
smaller_W = smaller.get_param("W")
smaller_b = smaller.get_param("b")
smaller_pad = smaller.get_param("pad")
# Copy the old weights and padding into the new layer
if smaller.has_dim("nO"):
old_nO = smaller.get_dim("nO")
larger_W[:, 0:old_nO, :, :] = smaller_W
larger_pad[:, :, 0:old_nO, :] = smaller_pad
larger_b[0:old_nO, :] = smaller_b
for i in range(old_nO, new_nO):
model.attrs["unseen_classes"].add(i)
larger.set_param("W", larger_W)
larger.set_param("b", larger_b)
larger.set_param("pad", larger_pad)
model._layers[1] = larger
model.set_ref("lower", larger)
return model

View File

@ -1,49 +0,0 @@
from libc.string cimport memset, memcpy
from thinc.backends.cblas cimport CBlas
from ..typedefs cimport weight_t, hash_t
from ..pipeline._parser_internals._state cimport StateC
cdef struct SizesC:
int states
int classes
int hiddens
int pieces
int feats
int embed_width
cdef struct WeightsC:
const float* feat_weights
const float* feat_bias
const float* hidden_bias
const float* hidden_weights
const float* seen_classes
cdef struct ActivationsC:
int* token_ids
float* unmaxed
float* scores
float* hiddens
int* is_valid
int _curr_size
int _max_size
cdef WeightsC get_c_weights(model) except *
cdef SizesC get_c_sizes(model, int batch_size) except *
cdef ActivationsC alloc_activations(SizesC n) nogil
cdef void free_activations(const ActivationsC* A) nogil
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil
cdef void cpu_log_loss(float* d_scores,
const float* costs, const int* is_valid, const float* scores, int O) nogil

View File

@ -1,500 +0,0 @@
# cython: infer_types=True, cdivision=True, boundscheck=False
cimport numpy as np
from libc.math cimport exp
from libc.string cimport memset, memcpy
from libc.stdlib cimport calloc, free, realloc
from thinc.backends.cblas cimport saxpy, sgemm
import numpy
import numpy.random
from thinc.api import Model, CupyOps, NumpyOps, get_ops
from .. import util
from ..errors import Errors
from ..typedefs cimport weight_t, class_t, hash_t
from ..pipeline._parser_internals.stateclass cimport StateClass
cdef WeightsC get_c_weights(model) except *:
cdef WeightsC output
cdef precompute_hiddens state2vec = model.state2vec
output.feat_weights = state2vec.get_feat_weights()
output.feat_bias = <const float*>state2vec.bias.data
cdef np.ndarray vec2scores_W
cdef np.ndarray vec2scores_b
if model.vec2scores is None:
output.hidden_weights = NULL
output.hidden_bias = NULL
else:
vec2scores_W = model.vec2scores.get_param("W")
vec2scores_b = model.vec2scores.get_param("b")
output.hidden_weights = <const float*>vec2scores_W.data
output.hidden_bias = <const float*>vec2scores_b.data
cdef np.ndarray class_mask = model._class_mask
output.seen_classes = <const float*>class_mask.data
return output
cdef SizesC get_c_sizes(model, int batch_size) except *:
cdef SizesC output
output.states = batch_size
if model.vec2scores is None:
output.classes = model.state2vec.get_dim("nO")
else:
output.classes = model.vec2scores.get_dim("nO")
output.hiddens = model.state2vec.get_dim("nO")
output.pieces = model.state2vec.get_dim("nP")
output.feats = model.state2vec.get_dim("nF")
output.embed_width = model.tokvecs.shape[1]
return output
cdef ActivationsC alloc_activations(SizesC n) nogil:
cdef ActivationsC A
memset(&A, 0, sizeof(A))
resize_activations(&A, n)
return A
cdef void free_activations(const ActivationsC* A) nogil:
free(A.token_ids)
free(A.scores)
free(A.unmaxed)
free(A.hiddens)
free(A.is_valid)
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
if n.states <= A._max_size:
A._curr_size = n.states
return
if A._max_size == 0:
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
A._max_size = n.states
else:
A.token_ids = <int*>realloc(A.token_ids,
n.states * n.feats * sizeof(A.token_ids[0]))
A.scores = <float*>realloc(A.scores,
n.states * n.classes * sizeof(A.scores[0]))
A.unmaxed = <float*>realloc(A.unmaxed,
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
A.hiddens = <float*>realloc(A.hiddens,
n.states * n.hiddens * sizeof(A.hiddens[0]))
A.is_valid = <int*>realloc(A.is_valid,
n.states * n.classes * sizeof(A.is_valid[0]))
A._max_size = n.states
A._curr_size = n.states
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil:
cdef double one = 1.0
resize_activations(A, n)
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
sum_state_features(cblas, A.unmaxed,
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
for i in range(n.states):
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
for j in range(n.hiddens):
index = i * n.hiddens * n.pieces + j * n.pieces
which = _arg_max(&A.unmaxed[index], n.pieces)
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
memset(A.scores, 0, n.states * n.classes * sizeof(float))
if W.hidden_weights == NULL:
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
else:
# Compute hidden-to-output
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
1.0, <const float *>A.hiddens, n.hiddens,
<const float *>W.hidden_weights, n.hiddens,
0.0, A.scores, n.classes)
# Add bias
for i in range(n.states):
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &A.scores[i*n.classes], 1)
# Set unseen classes to minimum value
i = 0
min_ = A.scores[0]
for i in range(1, n.states * n.classes):
if A.scores[i] < min_:
min_ = A.scores[i]
for i in range(n.states):
for j in range(n.classes):
if not W.seen_classes[j]:
A.scores[i*n.classes+j] = min_
cdef void sum_state_features(CBlas cblas, float* output,
const float* cached, const int* token_ids, int B, int F, int O) nogil:
cdef int idx, b, f, i
cdef const float* feature
padding = cached
cached += F * O
cdef int id_stride = F*O
cdef float one = 1.
for b in range(B):
for f in range(F):
if token_ids[f] < 0:
feature = &padding[f*O]
else:
idx = token_ids[f] * id_stride + f*O
feature = &cached[idx]
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
token_ids += F
cdef void cpu_log_loss(float* d_scores,
const float* costs, const int* is_valid, const float* scores,
int O) nogil:
"""Do multi-label log loss"""
cdef double max_, gmax, Z, gZ
best = arg_max_if_gold(scores, costs, is_valid, O)
guess = _arg_max(scores, O)
if best == -1 or guess == -1:
# These shouldn't happen, but if they do, we want to make sure we don't
# cause an OOB access.
return
Z = 1e-10
gZ = 1e-10
max_ = scores[guess]
gmax = scores[best]
for i in range(O):
Z += exp(scores[i] - max_)
if costs[i] <= costs[best]:
gZ += exp(scores[i] - gmax)
for i in range(O):
if costs[i] <= costs[best]:
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
else:
d_scores[i] = exp(scores[i]-max_) / Z
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
const int* is_valid, int n) nogil:
# Find minimum cost
cdef float cost = 1
for i in range(n):
if is_valid[i] and costs[i] < cost:
cost = costs[i]
# Now find best-scoring with that cost
cdef int best = -1
for i in range(n):
if costs[i] <= cost and is_valid[i]:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
cdef int best = -1
for i in range(n):
if is_valid[i] >= 1:
if best == -1 or scores[i] > scores[best]:
best = i
return best
class ParserStepModel(Model):
def __init__(self, docs, layers, *, has_upper, unseen_classes=None, train=True,
dropout=0.1):
Model.__init__(self, name="parser_step_model", forward=step_forward)
self.attrs["has_upper"] = has_upper
self.attrs["dropout_rate"] = dropout
self.tokvecs, self.bp_tokvecs = layers[0](docs, is_train=train)
if layers[1].get_dim("nP") >= 2:
activation = "maxout"
elif has_upper:
activation = None
else:
activation = "relu"
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
activation=activation, train=train)
if has_upper:
self.vec2scores = layers[-1]
else:
self.vec2scores = None
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
self.backprops = []
self._class_mask = numpy.zeros((self.nO,), dtype='f')
self._class_mask.fill(1)
if unseen_classes is not None:
for class_ in unseen_classes:
self._class_mask[class_] = 0.
def clear_memory(self):
del self.tokvecs
del self.bp_tokvecs
del self.state2vec
del self.backprops
del self._class_mask
@property
def nO(self):
if self.attrs["has_upper"]:
return self.vec2scores.get_dim("nO")
else:
return self.state2vec.get_dim("nO")
def class_is_unseen(self, class_):
return self._class_mask[class_]
def mark_class_unseen(self, class_):
self._class_mask[class_] = 0
def mark_class_seen(self, class_):
self._class_mask[class_] = 1
def get_token_ids(self, states):
cdef StateClass state
states = [state for state in states if not state.is_final()]
cdef np.ndarray ids = numpy.zeros((len(states), self.state2vec.nF),
dtype='i', order='C')
ids.fill(-1)
c_ids = <int*>ids.data
for state in states:
state.c.set_context_tokens(c_ids, ids.shape[1])
c_ids += ids.shape[1]
return ids
def backprop_step(self, token_ids, d_vector, get_d_tokvecs):
if isinstance(self.state2vec.ops, CupyOps) \
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
# Move token_ids and d_vector to GPU, asynchronously
self.backprops.append((
util.get_async(self.cuda_stream, token_ids),
util.get_async(self.cuda_stream, d_vector),
get_d_tokvecs
))
else:
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
def finish_steps(self, golds):
# Add a padding vector to the d_tokvecs gradient, so that missing
# values don't affect the real gradient.
d_tokvecs = self.ops.alloc((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
for ids, d_vector, bp_vector in self.backprops:
d_state_features = bp_vector((d_vector, ids))
ids = ids.flatten()
d_state_features = d_state_features.reshape(
(ids.size, d_state_features.shape[2]))
self.ops.scatter_add(d_tokvecs, ids,
d_state_features)
# Padded -- see update()
self.bp_tokvecs(d_tokvecs[:-1])
return d_tokvecs
NUMPY_OPS = NumpyOps()
def step_forward(model: ParserStepModel, states, is_train):
token_ids = model.get_token_ids(states)
vector, get_d_tokvecs = model.state2vec(token_ids, is_train)
mask = None
if model.attrs["has_upper"]:
dropout_rate = model.attrs["dropout_rate"]
if is_train and dropout_rate > 0:
mask = NUMPY_OPS.get_dropout_mask(vector.shape, 0.1)
vector *= mask
scores, get_d_vector = model.vec2scores(vector, is_train)
else:
scores = NumpyOps().asarray(vector)
get_d_vector = lambda d_scores: d_scores
# If the class is unseen, make sure its score is minimum
scores[:, model._class_mask == 0] = numpy.nanmin(scores)
def backprop_parser_step(d_scores):
# Zero vectors for unseen classes
d_scores *= model._class_mask
d_vector = get_d_vector(d_scores)
if mask is not None:
d_vector *= mask
model.backprop_step(token_ids, d_vector, get_d_tokvecs)
return None
return scores, backprop_parser_step
cdef class precompute_hiddens:
"""Allow a model to be "primed" by pre-computing input features in bulk.
This is used for the parser, where we want to take a batch of documents,
and compute vectors for each (token, position) pair. These vectors can then
be reused, especially for beam-search.
Let's say we're using 12 features for each state, e.g. word at start of
buffer, three words on stack, their children, etc. In the normal arc-eager
system, a document of length N is processed in 2*N states. This means we'll
create 2*N*12 feature vectors --- but if we pre-compute, we only need
N*12 vector computations. The saving for beam-search is much better:
if we have a beam of k, we'll normally make 2*N*12*K computations --
so we can save the factor k. This also gives a nice CPU/GPU division:
we can do all our hard maths up front, packed into large multiplications,
and do the hard-to-program parsing on the CPU.
"""
cdef readonly int nF, nO, nP
cdef bint _is_synchronized
cdef public object ops
cdef public object numpy_ops
cdef public object _cpu_ops
cdef np.ndarray _features
cdef np.ndarray _cached
cdef np.ndarray bias
cdef object _cuda_stream
cdef object _bp_hiddens
cdef object activation
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
activation="maxout", train=False):
gpu_cached, bp_features = lower_model(tokvecs, train)
cdef np.ndarray cached
if not isinstance(gpu_cached, numpy.ndarray):
# Note the passing of cuda_stream here: it lets
# cupy make the copy asynchronously.
# We then have to block before first use.
cached = gpu_cached.get(stream=cuda_stream)
else:
cached = gpu_cached
if not isinstance(lower_model.get_param("b"), numpy.ndarray):
self.bias = lower_model.get_param("b").get(stream=cuda_stream)
else:
self.bias = lower_model.get_param("b")
self.nF = cached.shape[1]
if lower_model.has_dim("nP"):
self.nP = lower_model.get_dim("nP")
else:
self.nP = 1
self.nO = cached.shape[2]
self.ops = lower_model.ops
self.numpy_ops = NumpyOps()
self._cpu_ops = get_ops("cpu") if isinstance(self.ops, CupyOps) else self.ops
assert activation in (None, "relu", "maxout")
self.activation = activation
self._is_synchronized = False
self._cuda_stream = cuda_stream
self._cached = cached
self._bp_hiddens = bp_features
cdef const float* get_feat_weights(self) except NULL:
if not self._is_synchronized and self._cuda_stream is not None:
self._cuda_stream.synchronize()
self._is_synchronized = True
return <float*>self._cached.data
def has_dim(self, name):
if name == "nF":
return self.nF if self.nF is not None else True
elif name == "nP":
return self.nP if self.nP is not None else True
elif name == "nO":
return self.nO if self.nO is not None else True
else:
return False
def get_dim(self, name):
if name == "nF":
return self.nF
elif name == "nP":
return self.nP
elif name == "nO":
return self.nO
else:
raise ValueError(Errors.E1033.format(name=name))
def set_dim(self, name, value):
if name == "nF":
self.nF = value
elif name == "nP":
self.nP = value
elif name == "nO":
self.nO = value
else:
raise ValueError(Errors.E1033.format(name=name))
def __call__(self, X, bint is_train):
if is_train:
return self.begin_update(X)
else:
return self.predict(X), lambda X: X
def predict(self, X):
return self.begin_update(X)[0]
def begin_update(self, token_ids):
cdef np.ndarray state_vector = numpy.zeros(
(token_ids.shape[0], self.nO, self.nP), dtype='f')
# This is tricky, but (assuming GPU available);
# - Input to forward on CPU
# - Output from forward on CPU
# - Input to backward on GPU!
# - Output from backward on GPU
bp_hiddens = self._bp_hiddens
cdef CBlas cblas = self._cpu_ops.cblas()
feat_weights = self.get_feat_weights()
cdef int[:, ::1] ids = token_ids
sum_state_features(cblas, <float*>state_vector.data,
feat_weights, &ids[0,0],
token_ids.shape[0], self.nF, self.nO*self.nP)
state_vector += self.bias
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
def backward(d_state_vector_ids):
d_state_vector, token_ids = d_state_vector_ids
d_state_vector = bp_nonlinearity(d_state_vector)
d_tokens = bp_hiddens((d_state_vector, token_ids))
return d_tokens
return state_vector, backward
def _nonlinearity(self, state_vector):
if self.activation == "maxout":
return self._maxout_nonlinearity(state_vector)
else:
return self._relu_nonlinearity(state_vector)
def _maxout_nonlinearity(self, state_vector):
state_vector, mask = self.numpy_ops.maxout(state_vector)
# We're outputting to CPU, but we need this variable on GPU for the
# backward pass.
mask = self.ops.asarray(mask)
def backprop_maxout(d_best):
return self.ops.backprop_maxout(d_best, mask, self.nP)
return state_vector, backprop_maxout
def _relu_nonlinearity(self, state_vector):
state_vector = state_vector.reshape((state_vector.shape[0], -1))
mask = state_vector >= 0.
state_vector *= mask
# We're outputting to CPU, but we need this variable on GPU for the
# backward pass.
mask = self.ops.asarray(mask)
def backprop_relu(d_best):
d_best *= mask
return d_best.reshape((d_best.shape + (1,)))
return state_vector, backprop_relu
cdef inline int _arg_max(const float* scores, const int n_classes) nogil:
if n_classes == 2:
return 0 if scores[0] > scores[1] else 1
cdef int i
cdef int best = 0
cdef float mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best

28
spacy/ml/tb_framework.pxd Normal file
View File

@ -0,0 +1,28 @@
from libc.stdint cimport int8_t
cdef struct SizesC:
int states
int classes
int hiddens
int pieces
int feats
int embed_width
int tokens
cdef struct WeightsC:
const float* feat_weights
const float* feat_bias
const float* hidden_bias
const float* hidden_weights
const int8_t* seen_mask
cdef struct ActivationsC:
int* token_ids
float* unmaxed
float* hiddens
int* is_valid
int _curr_size
int _max_size

View File

@ -1,50 +0,0 @@
from thinc.api import Model, noop
from .parser_model import ParserStepModel
from ..util import registry
@registry.layers("spacy.TransitionModel.v1")
def TransitionModel(
tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()
):
"""Set up a stepwise transition-based model"""
if upper is None:
has_upper = False
upper = noop()
else:
has_upper = True
# don't define nO for this object, because we can't dynamically change it
return Model(
name="parser_model",
forward=forward,
dims={"nI": tok2vec.maybe_get_dim("nI")},
layers=[tok2vec, lower, upper],
refs={"tok2vec": tok2vec, "lower": lower, "upper": upper},
init=init,
attrs={
"has_upper": has_upper,
"unseen_classes": set(unseen_classes),
"resize_output": resize_output,
},
)
def forward(model, X, is_train):
step_model = ParserStepModel(
X,
model.layers,
unseen_classes=model.attrs["unseen_classes"],
train=is_train,
has_upper=model.attrs["has_upper"],
)
return step_model, step_model.finish_steps
def init(model, X=None, Y=None):
model.get_ref("tok2vec").initialize(X=X)
lower = model.get_ref("lower")
lower.initialize()
if model.attrs["has_upper"]:
statevecs = model.ops.alloc2f(2, lower.get_dim("nO"))
model.get_ref("upper").initialize(X=statevecs)

621
spacy/ml/tb_framework.pyx Normal file
View File

@ -0,0 +1,621 @@
# cython: infer_types=True, cdivision=True, boundscheck=False
from typing import List, Tuple, Any, Optional, TypeVar, cast
from libc.string cimport memset, memcpy
from libc.stdlib cimport calloc, free, realloc
from libcpp.vector cimport vector
import numpy
cimport numpy as np
from thinc.api import Model, normal_init, chain, list2array, Linear
from thinc.api import uniform_init, glorot_uniform_init, zero_init
from thinc.api import NumpyOps
from thinc.backends.cblas cimport CBlas, saxpy, sgemm
from thinc.types import Floats1d, Floats2d, Floats3d, Floats4d
from thinc.types import Ints1d, Ints2d
from ..errors import Errors
from ..pipeline._parser_internals import _beam_utils
from ..pipeline._parser_internals.batch import GreedyBatch
from ..pipeline._parser_internals._parser_utils cimport arg_max
from ..pipeline._parser_internals.transition_system cimport c_transition_batch, c_apply_actions
from ..pipeline._parser_internals.transition_system cimport TransitionSystem
from ..pipeline._parser_internals.stateclass cimport StateC, StateClass
from ..tokens.doc import Doc
from ..util import registry
State = Any # TODO
@registry.layers("spacy.TransitionModel.v2")
def TransitionModel(
*,
tok2vec: Model[List[Doc], List[Floats2d]],
beam_width: int = 1,
beam_density: float = 0.0,
state_tokens: int,
hidden_width: int,
maxout_pieces: int,
nO: Optional[int] = None,
unseen_classes=set(),
) -> Model[Tuple[List[Doc], TransitionSystem], List[Tuple[State, List[Floats2d]]]]:
"""Set up a transition-based parsing model, using a maxout hidden
layer and a linear output layer.
"""
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec_projected = chain(tok2vec, list2array(), Linear(hidden_width, t2v_width)) # type: ignore
tok2vec_projected.set_dim("nO", hidden_width)
# FIXME: we use `output` as a container for the output layer's
# weights and biases. Thinc optimizers cannot handle resizing
# of parameters. So, when the parser model is resized, we
# construct a new `output` layer, which has a different key in
# the optimizer. Once the optimizer supports parameter resizing,
# we can replace the `output` layer by `output_W` and `output_b`
# parameters in this model.
output = Linear(nO=None, nI=hidden_width, init_W=zero_init)
return Model(
name="parser_model",
forward=forward,
init=init,
layers=[tok2vec_projected, output],
refs={
"tok2vec": tok2vec_projected,
"output": output,
},
params={
"hidden_W": None, # Floats2d W for the hidden layer
"hidden_b": None, # Floats1d bias for the hidden layer
"hidden_pad": None, # Floats1d padding for the hidden layer
},
dims={
"nO": None, # Output size
"nP": maxout_pieces,
"nH": hidden_width,
"nI": tok2vec_projected.maybe_get_dim("nO"),
"nF": state_tokens,
},
attrs={
"beam_width": beam_width,
"beam_density": beam_density,
"unseen_classes": set(unseen_classes),
"resize_output": resize_output,
},
)
def resize_output(model: Model, new_nO: int) -> Model:
old_nO = model.maybe_get_dim("nO")
output = model.get_ref("output")
if old_nO is None:
model.set_dim("nO", new_nO)
output.set_dim("nO", new_nO)
output.initialize()
return model
elif new_nO <= old_nO:
return model
elif output.has_param("W"):
nH = model.get_dim("nH")
new_output = Linear(nO=new_nO, nI=nH, init_W=zero_init)
new_output.initialize()
new_W = new_output.get_param("W")
new_b = new_output.get_param("b")
old_W = output.get_param("W")
old_b = output.get_param("b")
new_W[:old_nO] = old_W # type: ignore
new_b[:old_nO] = old_b # type: ignore
for i in range(old_nO, new_nO):
model.attrs["unseen_classes"].add(i)
model.layers[-1] = new_output
model.set_ref("output", new_output)
# TODO: Avoid this private intrusion
model._dims["nO"] = new_nO
return model
def init(
model,
X: Optional[Tuple[List[Doc], TransitionSystem]] = None,
Y: Optional[Tuple[List[State], List[Floats2d]]] = None,
):
if X is not None:
docs, moves = X
model.get_ref("tok2vec").initialize(X=docs)
else:
model.get_ref("tok2vec").initialize()
inferred_nO = _infer_nO(Y)
if inferred_nO is not None:
current_nO = model.maybe_get_dim("nO")
if current_nO is None or current_nO != inferred_nO:
model.attrs["resize_output"](model, inferred_nO)
nO = model.get_dim("nO")
nP = model.get_dim("nP")
nH = model.get_dim("nH")
nI = model.get_dim("nI")
nF = model.get_dim("nF")
ops = model.ops
Wl = ops.alloc2f(nH * nP, nF * nI)
bl = ops.alloc1f(nH * nP)
padl = ops.alloc1f(nI)
# Wl = zero_init(ops, Wl.shape)
Wl = glorot_uniform_init(ops, Wl.shape)
padl = uniform_init(ops, padl.shape) # type: ignore
# TODO: Experiment with whether better to initialize output_W
model.set_param("hidden_W", Wl)
model.set_param("hidden_b", bl)
model.set_param("hidden_pad", padl)
# model = _lsuv_init(model)
return model
class TransitionModelInputs:
"""
Input to transition model.
"""
# dataclass annotation is not yet supported in Cython 0.29.x,
# so, we'll do something close to it.
actions: Optional[List[Ints1d]]
docs: List[Doc]
max_moves: int
moves: TransitionSystem
states: Optional[List[State]]
__slots__ = [
"actions",
"docs",
"max_moves",
"moves",
"states",
]
def __init__(
self,
docs: List[Doc],
moves: TransitionSystem,
actions: Optional[List[Ints1d]]=None,
max_moves: int=0,
states: Optional[List[State]]=None):
"""
actions (Optional[List[Ints1d]]): actions to apply for each Doc.
docs (List[Doc]): Docs to predict transition sequences for.
max_moves: (int): the maximum number of moves to apply, values less
than 1 will apply moves to states until they are final states.
moves (TransitionSystem): the transition system to use when predicting
the transition sequences.
states (Optional[List[States]]): the initial states to predict the
transition sequences for. When absent, the initial states are
initialized from the provided Docs.
"""
self.actions = actions
self.docs = docs
self.moves = moves
self.max_moves = max_moves
self.states = states
def forward(model, inputs: TransitionModelInputs, is_train: bool):
docs = inputs.docs
moves = inputs.moves
actions = inputs.actions
beam_width = model.attrs["beam_width"]
hidden_pad = model.get_param("hidden_pad")
tok2vec = model.get_ref("tok2vec")
states = moves.init_batch(docs) if inputs.states is None else inputs.states
tokvecs, backprop_tok2vec = tok2vec(docs, is_train)
tokvecs = model.ops.xp.vstack((tokvecs, hidden_pad))
feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train)
seen_mask = _get_seen_mask(model)
if not is_train and beam_width == 1 and isinstance(model.ops, NumpyOps):
# Note: max_moves is only used during training, so we don't need to
# pass it to the greedy inference path.
return _forward_greedy_cpu(model, moves, states, feats, seen_mask, actions=actions)
else:
return _forward_fallback(model, moves, states, tokvecs, backprop_tok2vec,
feats, backprop_feats, seen_mask, is_train, actions=actions,
max_moves=inputs.max_moves)
def _forward_greedy_cpu(model: Model, TransitionSystem moves, states: List[StateClass], np.ndarray feats,
np.ndarray[np.npy_bool, ndim=1] seen_mask, actions: Optional[List[Ints1d]]=None):
cdef vector[StateC*] c_states
cdef StateClass state
for state in states:
if not state.is_final():
c_states.push_back(state.c)
weights = _get_c_weights(model, <float*>feats.data, seen_mask)
# Precomputed features have rows for each token, plus one for padding.
cdef int n_tokens = feats.shape[0] - 1
sizes = _get_c_sizes(model, c_states.size(), n_tokens)
cdef CBlas cblas = model.ops.cblas()
scores = _parse_batch(cblas, moves, &c_states[0], weights, sizes, actions=actions)
def backprop(dY):
raise ValueError(Errors.E4004)
return (states, scores), backprop
cdef list _parse_batch(CBlas cblas, TransitionSystem moves, StateC** states,
WeightsC weights, SizesC sizes, actions: Optional[List[Ints1d]]=None):
cdef int i, j
cdef vector[StateC *] unfinished
cdef ActivationsC activations = _alloc_activations(sizes)
cdef np.ndarray step_scores
cdef np.ndarray step_actions
scores = []
while sizes.states >= 1:
step_scores = numpy.empty((sizes.states, sizes.classes), dtype="f")
step_actions = actions[0] if actions is not None else None
with nogil:
_predict_states(cblas, &activations, <float*>step_scores.data, states, &weights, sizes)
if actions is None:
# Validate actions, argmax, take action.
c_transition_batch(moves, states, <const float*>step_scores.data, sizes.classes,
sizes.states)
else:
c_apply_actions(moves, states, <const int*>step_actions.data, sizes.states)
for i in range(sizes.states):
if not states[i].is_final():
unfinished.push_back(states[i])
for i in range(unfinished.size()):
states[i] = unfinished[i]
sizes.states = unfinished.size()
scores.append(step_scores)
unfinished.clear()
actions = actions[1:] if actions is not None else None
_free_activations(&activations)
return scores
def _forward_fallback(
model: Model,
moves: TransitionSystem,
states: List[StateClass],
tokvecs, backprop_tok2vec,
feats,
backprop_feats,
seen_mask,
is_train: bool,
actions: Optional[List[Ints1d]]=None,
max_moves: int=0):
nF = model.get_dim("nF")
output = model.get_ref("output")
hidden_b = model.get_param("hidden_b")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
beam_width = model.attrs["beam_width"]
beam_density = model.attrs["beam_density"]
ops = model.ops
all_ids = []
all_which = []
all_statevecs = []
all_scores = []
if beam_width == 1:
batch = GreedyBatch(moves, states, None)
else:
batch = _beam_utils.BeamBatch(
moves, states, None, width=beam_width, density=beam_density
)
arange = ops.xp.arange(nF)
n_moves = 0
while not batch.is_done:
ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i")
for i, state in enumerate(batch.get_unfinished_states()):
state.set_context_tokens(ids, i, nF)
# Sum the state features, add the bias and apply the activation (maxout)
# to create the state vectors.
preacts2f = feats[ids, arange].sum(axis=1) # type: ignore
preacts2f += hidden_b
preacts = ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP)
assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape
statevecs, which = ops.maxout(preacts)
# We don't use output's backprop, since we want to backprop for
# all states at once, rather than a single state.
scores = output.predict(statevecs)
scores[:, seen_mask] = ops.xp.nanmin(scores)
# Transition the states, filtering out any that are finished.
cpu_scores = ops.to_numpy(scores)
if actions is None:
batch.advance(cpu_scores)
else:
batch.advance_with_actions(actions[0])
actions = actions[1:]
all_scores.append(scores)
if is_train:
# Remember intermediate results for the backprop.
all_ids.append(ids)
all_statevecs.append(statevecs)
all_which.append(which)
if n_moves >= max_moves >= 1:
break
n_moves += 1
def backprop_parser(d_states_d_scores):
ids = ops.xp.vstack(all_ids)
which = ops.xp.vstack(all_which)
statevecs = ops.xp.vstack(all_statevecs)
_, d_scores = d_states_d_scores
if model.attrs.get("unseen_classes"):
# If we have a negative gradient (i.e. the probability should
# increase) on any classes we filtered out as unseen, mark
# them as seen.
for clas in set(model.attrs["unseen_classes"]):
if (d_scores[:, clas] < 0).any():
model.attrs["unseen_classes"].remove(clas)
d_scores *= seen_mask == False
# Calculate the gradients for the parameters of the output layer.
# The weight gemm is (nS, nO) @ (nS, nH).T
output.inc_grad("b", d_scores.sum(axis=0))
output.inc_grad("W", ops.gemm(d_scores, statevecs, trans1=True))
# Now calculate d_statevecs, by backproping through the output linear layer.
# This gemm is (nS, nO) @ (nO, nH)
output_W = output.get_param("W")
d_statevecs = ops.gemm(d_scores, output_W)
# Backprop through the maxout activation
d_preacts = ops.backprop_maxout(d_statevecs, which, nP)
d_preacts2f = ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP)
model.inc_grad("hidden_b", d_preacts2f.sum(axis=0))
# We don't need to backprop the summation, because we pass back the IDs instead
d_state_features = backprop_feats((d_preacts2f, ids))
d_tokvecs = ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1])
ops.scatter_add(d_tokvecs, ids, d_state_features)
model.inc_grad("hidden_pad", d_tokvecs[-1])
return (backprop_tok2vec(d_tokvecs[:-1]), None)
return (list(batch), all_scores), backprop_parser
def _get_seen_mask(model: Model) -> numpy.array[bool, 1]:
mask = model.ops.xp.zeros(model.get_dim("nO"), dtype="bool")
for class_ in model.attrs.get("unseen_classes", set()):
mask[class_] = True
return mask
def _forward_precomputable_affine(model, X: Floats2d, is_train: bool):
W: Floats2d = model.get_param("hidden_W")
nF = model.get_dim("nF")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
# The weights start out (nH * nP, nF * nI). Transpose and reshape to (nF * nH *nP, nI)
W3f = model.ops.reshape3f(W, nH * nP, nF, nI)
W3f = W3f.transpose((1, 0, 2))
W2f = model.ops.reshape2f(W3f, nF * nH * nP, nI)
assert X.shape == (X.shape[0], nI), X.shape
Yf_ = model.ops.gemm(X, W2f, trans2=True)
Yf = model.ops.reshape3f(Yf_, Yf_.shape[0], nF, nH * nP)
def backward(dY_ids: Tuple[Floats3d, Ints2d]):
# This backprop is particularly tricky, because we get back a different
# thing from what we put out. We put out an array of shape:
# (nB, nF, nH, nP), and get back:
# (nB, nH, nP) and ids (nB, nF)
# The ids tell us the values of nF, so we would have:
#
# dYf = zeros((nB, nF, nH, nP))
# for b in range(nB):
# for f in range(nF):
# dYf[b, ids[b, f]] += dY[b]
#
# However, we avoid building that array for efficiency -- and just pass
# in the indices.
dY, ids = dY_ids
dXf = model.ops.gemm(dY, W)
Xf = X[ids].reshape((ids.shape[0], -1))
dW = model.ops.gemm(dY, Xf, trans1=True)
model.inc_grad("hidden_W", dW)
return model.ops.reshape3f(dXf, dXf.shape[0], nF, nI)
return Yf, backward
def _infer_nO(Y: Optional[Tuple[List[State], List[Floats2d]]]) -> Optional[int]:
if Y is None:
return None
_, scores = Y
if len(scores) == 0:
return None
assert scores[0].shape[0] >= 1
assert len(scores[0].shape) == 2
return scores[0].shape[1]
def _lsuv_init(model: Model):
"""This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
"""
W = model.maybe_get_param("hidden_W")
if W is not None and W.any():
return
nF = model.get_dim("nF")
nH = model.get_dim("nH")
nP = model.get_dim("nP")
nI = model.get_dim("nI")
W = model.ops.alloc4f(nF, nH, nP, nI)
b = model.ops.alloc2f(nH, nP)
pad = model.ops.alloc4f(1, nF, nH, nP)
ops = model.ops
W = normal_init(ops, W.shape, mean=float(ops.xp.sqrt(1.0 / nF * nI)))
pad = normal_init(ops, pad.shape, mean=1.0)
model.set_param("W", W)
model.set_param("b", b)
model.set_param("pad", pad)
ids = ops.alloc_f((5000, nF), dtype="f")
ids += ops.xp.random.uniform(0, 1000, ids.shape)
ids = ops.asarray(ids, dtype="i")
tokvecs = ops.alloc_f((5000, nI), dtype="f")
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
tokvecs.shape
)
def predict(ids, tokvecs):
# nS ids. nW tokvecs. Exclude the padding array.
hiddens, _ = _forward_precomputable_affine(model, tokvecs[:-1], False)
vectors = model.ops.alloc2f(ids.shape[0], nH * nP)
# need nS vectors
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nH * nP))
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
vectors3f = model.ops.reshape3f(vectors, vectors.shape[0], nH, nP)
vectors3f += b
return model.ops.maxout(vectors3f)[0]
tol_var = 0.01
tol_mean = 0.01
t_max = 10
W = cast(Floats4d, model.get_param("hidden_W").copy())
b = cast(Floats2d, model.get_param("hidden_b").copy())
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = model.ops.xp.var(acts1)
mean = model.ops.xp.mean(acts1)
if abs(var - 1.0) >= tol_var:
W /= model.ops.xp.sqrt(var)
model.set_param("hidden_W", W)
elif abs(mean) >= tol_mean:
b -= mean
model.set_param("hidden_b", b)
else:
break
return model
cdef WeightsC _get_c_weights(model, const float* feats, np.ndarray[np.npy_bool, ndim=1] seen_mask) except *:
output = model.get_ref("output")
cdef np.ndarray hidden_b = model.get_param("hidden_b")
cdef np.ndarray output_W = output.get_param("W")
cdef np.ndarray output_b = output.get_param("b")
cdef WeightsC weights
weights.feat_weights = feats
weights.feat_bias = <const float*>hidden_b.data
weights.hidden_weights = <const float *> output_W.data
weights.hidden_bias = <const float *> output_b.data
weights.seen_mask = <const int8_t*> seen_mask.data
return weights
cdef SizesC _get_c_sizes(model, int batch_size, int tokens) except *:
cdef SizesC sizes
sizes.states = batch_size
sizes.classes = model.get_dim("nO")
sizes.hiddens = model.get_dim("nH")
sizes.pieces = model.get_dim("nP")
sizes.feats = model.get_dim("nF")
sizes.embed_width = model.get_dim("nI")
sizes.tokens = tokens
return sizes
cdef ActivationsC _alloc_activations(SizesC n) nogil:
cdef ActivationsC A
memset(&A, 0, sizeof(A))
_resize_activations(&A, n)
return A
cdef void _free_activations(const ActivationsC* A) nogil:
free(A.token_ids)
free(A.unmaxed)
free(A.hiddens)
free(A.is_valid)
cdef void _resize_activations(ActivationsC* A, SizesC n) nogil:
if n.states <= A._max_size:
A._curr_size = n.states
return
if A._max_size == 0:
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
A._max_size = n.states
else:
A.token_ids = <int*>realloc(A.token_ids,
n.states * n.feats * sizeof(A.token_ids[0]))
A.unmaxed = <float*>realloc(A.unmaxed,
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
A.hiddens = <float*>realloc(A.hiddens,
n.states * n.hiddens * sizeof(A.hiddens[0]))
A.is_valid = <int*>realloc(A.is_valid,
n.states * n.classes * sizeof(A.is_valid[0]))
A._max_size = n.states
A._curr_size = n.states
cdef void _predict_states(CBlas cblas, ActivationsC* A, float* scores, StateC** states, const WeightsC* W, SizesC n) nogil:
_resize_activations(A, n)
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
_sum_state_features(cblas, A.unmaxed, W.feat_weights, A.token_ids, n)
for i in range(n.states):
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
for j in range(n.hiddens):
index = i * n.hiddens * n.pieces + j * n.pieces
which = arg_max(&A.unmaxed[index], n.pieces)
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
if W.hidden_weights == NULL:
memcpy(scores, A.hiddens, n.states * n.classes * sizeof(float))
else:
# Compute hidden-to-output
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
1.0, <const float *>A.hiddens, n.hiddens,
<const float *>W.hidden_weights, n.hiddens,
0.0, scores, n.classes)
# Add bias
for i in range(n.states):
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1)
# Set unseen classes to minimum value
i = 0
min_ = scores[0]
for i in range(1, n.states * n.classes):
if scores[i] < min_:
min_ = scores[i]
for i in range(n.states):
for j in range(n.classes):
if W.seen_mask[j]:
scores[i*n.classes+j] = min_
cdef void _sum_state_features(CBlas cblas, float* output,
const float* cached, const int* token_ids, SizesC n) nogil:
cdef int idx, b, f, i
cdef const float* feature
cdef int B = n.states
cdef int O = n.hiddens * n.pieces
cdef int F = n.feats
cdef int T = n.tokens
padding = cached + (T * F * O)
cdef int id_stride = F*O
cdef float one = 1.
for b in range(B):
for f in range(F):
if token_ids[f] < 0:
feature = &padding[f*O]
else:
idx = token_ids[f] * id_stride + f*O
feature = &cached[idx]
saxpy(cblas)(O, one, <const float*>feature, 1, &output[b*O], 1)
token_ids += F

View File

@ -7,6 +7,7 @@ from cpython.ref cimport PyObject, Py_XDECREF
from ...typedefs cimport hash_t, class_t from ...typedefs cimport hash_t, class_t
from .transition_system cimport TransitionSystem, Transition from .transition_system cimport TransitionSystem, Transition
from ...errors import Errors from ...errors import Errors
from .batch cimport Batch
from .search cimport Beam, MaxViolation from .search cimport Beam, MaxViolation
from .search import MaxViolation from .search import MaxViolation
from .stateclass cimport StateC, StateClass from .stateclass cimport StateC, StateClass
@ -26,7 +27,7 @@ cdef int check_final_state(void* _state, void* extra_args) except -1:
return state.is_final() return state.is_final()
cdef class BeamBatch(object): cdef class BeamBatch(Batch):
cdef public TransitionSystem moves cdef public TransitionSystem moves
cdef public object states cdef public object states
cdef public object docs cdef public object docs

View File

@ -0,0 +1,2 @@
cdef int arg_max(const float* scores, const int n_classes) nogil
cdef int arg_max_if_valid(const float* scores, const int* is_valid, int n) nogil

View File

@ -0,0 +1,22 @@
# cython: infer_types=True
cdef inline int arg_max(const float* scores, const int n_classes) nogil:
if n_classes == 2:
return 0 if scores[0] > scores[1] else 1
cdef int i
cdef int best = 0
cdef float mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best
cdef inline int arg_max_if_valid(const float* scores, const int* is_valid, int n) nogil:
cdef int best = -1
for i in range(n):
if is_valid[i] >= 1:
if best == -1 or scores[i] > scores[best]:
best = i
return best

View File

@ -6,7 +6,6 @@ cimport libcpp
from libcpp.unordered_map cimport unordered_map from libcpp.unordered_map cimport unordered_map
from libcpp.vector cimport vector from libcpp.vector cimport vector
from libcpp.set cimport set from libcpp.set cimport set
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
from murmurhash.mrmr cimport hash64 from murmurhash.mrmr cimport hash64
from ...vocab cimport EMPTY_LEXEME from ...vocab cimport EMPTY_LEXEME
@ -26,7 +25,7 @@ cdef struct ArcC:
cdef cppclass StateC: cdef cppclass StateC:
int* _heads vector[int] _heads
const TokenC* _sent const TokenC* _sent
vector[int] _stack vector[int] _stack
vector[int] _rebuffer vector[int] _rebuffer
@ -34,31 +33,34 @@ cdef cppclass StateC:
unordered_map[int, vector[ArcC]] _left_arcs unordered_map[int, vector[ArcC]] _left_arcs
unordered_map[int, vector[ArcC]] _right_arcs unordered_map[int, vector[ArcC]] _right_arcs
vector[libcpp.bool] _unshiftable vector[libcpp.bool] _unshiftable
vector[int] history
set[int] _sent_starts set[int] _sent_starts
TokenC _empty_token TokenC _empty_token
int length int length
int offset int offset
int _b_i int _b_i
__init__(const TokenC* sent, int length) nogil: __init__(const TokenC* sent, int length) nogil except +:
this._heads.resize(length, -1)
this._unshiftable.resize(length, False)
# Reserve memory ahead of time to minimize allocations during parsing.
# The initial capacity set here ideally reflects the expected average-case/majority usage.
cdef int init_capacity = 32
this._stack.reserve(init_capacity)
this._rebuffer.reserve(init_capacity)
this._ents.reserve(init_capacity)
this._left_arcs.reserve(init_capacity)
this._right_arcs.reserve(init_capacity)
this.history.reserve(init_capacity)
this._sent = sent this._sent = sent
this._heads = <int*>calloc(length, sizeof(int))
if not (this._sent and this._heads):
with gil:
PyErr_SetFromErrno(MemoryError)
PyErr_CheckSignals()
this.offset = 0 this.offset = 0
this.length = length this.length = length
this._b_i = 0 this._b_i = 0
for i in range(length):
this._heads[i] = -1
this._unshiftable.push_back(0)
memset(&this._empty_token, 0, sizeof(TokenC)) memset(&this._empty_token, 0, sizeof(TokenC))
this._empty_token.lex = &EMPTY_LEXEME this._empty_token.lex = &EMPTY_LEXEME
__dealloc__():
free(this._heads)
void set_context_tokens(int* ids, int n) nogil: void set_context_tokens(int* ids, int n) nogil:
cdef int i, j cdef int i, j
if n == 1: if n == 1:
@ -131,19 +133,20 @@ cdef cppclass StateC:
ids[i] = -1 ids[i] = -1
int S(int i) nogil const: int S(int i) nogil const:
if i >= this._stack.size(): cdef int stack_size = this._stack.size()
if i >= stack_size or i < 0:
return -1 return -1
elif i < 0: else:
return -1 return this._stack[stack_size - (i+1)]
return this._stack.at(this._stack.size() - (i+1))
int B(int i) nogil const: int B(int i) nogil const:
cdef int buf_size = this._rebuffer.size()
if i < 0: if i < 0:
return -1 return -1
elif i < this._rebuffer.size(): elif i < buf_size:
return this._rebuffer.at(this._rebuffer.size() - (i+1)) return this._rebuffer[buf_size - (i+1)]
else: else:
b_i = this._b_i + (i - this._rebuffer.size()) b_i = this._b_i + (i - buf_size)
if b_i >= this.length: if b_i >= this.length:
return -1 return -1
else: else:
@ -242,7 +245,7 @@ cdef cppclass StateC:
return 0 return 0
elif this._sent[word].sent_start == 1: elif this._sent[word].sent_start == 1:
return 1 return 1
elif this._sent_starts.count(word) >= 1: elif this._sent_starts.const_find(word) != this._sent_starts.const_end():
return 1 return 1
else: else:
return 0 return 0
@ -327,7 +330,7 @@ cdef cppclass StateC:
if item >= this._unshiftable.size(): if item >= this._unshiftable.size():
return 0 return 0
else: else:
return this._unshiftable.at(item) return this._unshiftable[item]
void set_reshiftable(int item) nogil: void set_reshiftable(int item) nogil:
if item < this._unshiftable.size(): if item < this._unshiftable.size():
@ -347,6 +350,9 @@ cdef cppclass StateC:
this._heads[child] = head this._heads[child] = head
void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil: void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil:
cdef vector[ArcC]* arcs
cdef ArcC* arc
arcs_it = heads_arcs.find(h_i) arcs_it = heads_arcs.find(h_i)
if arcs_it == heads_arcs.end(): if arcs_it == heads_arcs.end():
return return
@ -355,12 +361,12 @@ cdef cppclass StateC:
if arcs.size() == 0: if arcs.size() == 0:
return return
arc = arcs.back() arc = &arcs.back()
if arc.head == h_i and arc.child == c_i: if arc.head == h_i and arc.child == c_i:
arcs.pop_back() arcs.pop_back()
else: else:
for i in range(arcs.size()-1): for i in range(arcs.size()-1):
arc = arcs.at(i) arc = &deref(arcs)[i]
if arc.head == h_i and arc.child == c_i: if arc.head == h_i and arc.child == c_i:
arc.head = -1 arc.head = -1
arc.child = -1 arc.child = -1
@ -400,10 +406,11 @@ cdef cppclass StateC:
this._rebuffer = src._rebuffer this._rebuffer = src._rebuffer
this._sent_starts = src._sent_starts this._sent_starts = src._sent_starts
this._unshiftable = src._unshiftable this._unshiftable = src._unshiftable
memcpy(this._heads, src._heads, this.length * sizeof(this._heads[0])) this._heads = src._heads
this._ents = src._ents this._ents = src._ents
this._left_arcs = src._left_arcs this._left_arcs = src._left_arcs
this._right_arcs = src._right_arcs this._right_arcs = src._right_arcs
this._b_i = src._b_i this._b_i = src._b_i
this.offset = src.offset this.offset = src.offset
this._empty_token = src._empty_token this._empty_token = src._empty_token
this.history = src.history

View File

@ -773,6 +773,8 @@ cdef class ArcEager(TransitionSystem):
return list(arcs) return list(arcs)
def has_gold(self, Example eg, start=0, end=None): def has_gold(self, Example eg, start=0, end=None):
if end is not None and end < 0:
end = None
for word in eg.y[start:end]: for word in eg.y[start:end]:
if word.dep != 0: if word.dep != 0:
return True return True
@ -858,6 +860,7 @@ cdef class ArcEager(TransitionSystem):
state.print_state() state.print_state()
))) )))
action.do(state.c, action.label) action.do(state.c, action.label)
state.c.history.push_back(i)
break break
else: else:
failed = False failed = False

View File

@ -0,0 +1,2 @@
cdef class Batch:
pass

View File

@ -0,0 +1,52 @@
from typing import Any
TransitionSystem = Any # TODO
cdef class Batch:
def advance(self, scores):
raise NotImplementedError
def get_states(self):
raise NotImplementedError
@property
def is_done(self):
raise NotImplementedError
def get_unfinished_states(self):
raise NotImplementedError
def __getitem__(self, i):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
class GreedyBatch(Batch):
def __init__(self, moves: TransitionSystem, states, golds):
self._moves = moves
self._states = states
self._next_states = [s for s in states if not s.is_final()]
def advance(self, scores):
self._next_states = self._moves.transition_states(self._next_states, scores)
def advance_with_actions(self, actions):
self._next_states = self._moves.apply_actions(self._next_states, actions)
def get_states(self):
return self._states
@property
def is_done(self):
return all(s.is_final() for s in self._states)
def get_unfinished_states(self):
return [st for st in self._states if not st.is_final()]
def __getitem__(self, i):
return self._states[i]
def __len__(self):
return len(self._states)

View File

@ -306,6 +306,8 @@ cdef class BiluoPushDown(TransitionSystem):
for span in eg.y.spans.get(neg_key, []): for span in eg.y.spans.get(neg_key, []):
if span.start >= start and span.end <= end: if span.start >= start and span.end <= end:
return True return True
if end is not None and end < 0:
end = None
for word in eg.y[start:end]: for word in eg.y[start:end]:
if word.ent_iob != 0: if word.ent_iob != 0:
return True return True

View File

@ -20,6 +20,10 @@ cdef class StateClass:
if self._borrowed != 1: if self._borrowed != 1:
del self.c del self.c
@property
def history(self):
return list(self.c.history)
@property @property
def stack(self): def stack(self):
return [self.S(i) for i in range(self.c.stack_depth())] return [self.S(i) for i in range(self.c.stack_depth())]
@ -176,3 +180,6 @@ cdef class StateClass:
def clone(self, StateClass src): def clone(self, StateClass src):
self.c.clone(src.c) self.c.clone(src.c)
def set_context_tokens(self, int[:, :] output, int row, int n_feats):
self.c.set_context_tokens(&output[row, 0], n_feats)

View File

@ -53,3 +53,10 @@ cdef class TransitionSystem:
cdef int set_costs(self, int* is_valid, weight_t* costs, cdef int set_costs(self, int* is_valid, weight_t* costs,
const StateC* state, gold) except -1 const StateC* state, gold) except -1
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
int batch_size) nogil
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
int nr_class, int batch_size) nogil

View File

@ -1,6 +1,8 @@
# cython: infer_types=True # cython: infer_types=True
from __future__ import print_function from __future__ import print_function
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from libc.stdlib cimport calloc, free
from libcpp.vector cimport vector
from collections import Counter from collections import Counter
import srsly import srsly
@ -10,6 +12,7 @@ from ...typedefs cimport weight_t, attr_t
from ...tokens.doc cimport Doc from ...tokens.doc cimport Doc
from ...structs cimport TokenC from ...structs cimport TokenC
from .stateclass cimport StateClass from .stateclass cimport StateClass
from ._parser_utils cimport arg_max_if_valid
from ...errors import Errors from ...errors import Errors
from ... import util from ... import util
@ -73,7 +76,18 @@ cdef class TransitionSystem:
offset += len(doc) offset += len(doc)
return states return states
def follow_history(self, doc, history):
cdef int clas
cdef StateClass state = StateClass(doc)
for clas in history:
action = self.c[clas]
action.do(state.c, action.label)
state.c.history.push_back(clas)
return state
def get_oracle_sequence(self, Example example, _debug=False): def get_oracle_sequence(self, Example example, _debug=False):
if not self.has_gold(example):
return []
states, golds, _ = self.init_gold_batch([example]) states, golds, _ = self.init_gold_batch([example])
if not states: if not states:
return [] return []
@ -85,6 +99,8 @@ cdef class TransitionSystem:
return self.get_oracle_sequence_from_state(state, gold) return self.get_oracle_sequence_from_state(state, gold)
def get_oracle_sequence_from_state(self, StateClass state, gold, _debug=None): def get_oracle_sequence_from_state(self, StateClass state, gold, _debug=None):
if state.is_final():
return []
cdef Pool mem = Pool() cdef Pool mem = Pool()
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc # n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
assert self.n_moves > 0 assert self.n_moves > 0
@ -110,6 +126,7 @@ cdef class TransitionSystem:
"S0 head?", str(state.has_head(state.S(0))), "S0 head?", str(state.has_head(state.S(0))),
))) )))
action.do(state.c, action.label) action.do(state.c, action.label)
state.c.history.push_back(i)
break break
else: else:
if _debug: if _debug:
@ -137,6 +154,28 @@ cdef class TransitionSystem:
raise ValueError(Errors.E170.format(name=name)) raise ValueError(Errors.E170.format(name=name))
action = self.lookup_transition(name) action = self.lookup_transition(name)
action.do(state.c, action.label) action.do(state.c, action.label)
state.c.history.push_back(action.clas)
def apply_actions(self, states, const int[::1] actions):
assert len(states) == actions.shape[0]
cdef StateClass state
cdef vector[StateC*] c_states
c_states.resize(len(states))
cdef int i
for (i, state) in enumerate(states):
c_states[i] = state.c
c_apply_actions(self, &c_states[0], &actions[0], actions.shape[0])
return [state for state in states if not state.c.is_final()]
def transition_states(self, states, float[:, ::1] scores):
assert len(states) == scores.shape[0]
cdef StateClass state
cdef float* c_scores = &scores[0, 0]
cdef vector[StateC*] c_states
for state in states:
c_states.push_back(state.c)
c_transition_batch(self, &c_states[0], c_scores, scores.shape[1], scores.shape[0])
return [state for state in states if not state.c.is_final()]
cdef Transition lookup_transition(self, object name) except *: cdef Transition lookup_transition(self, object name) except *:
raise NotImplementedError raise NotImplementedError
@ -250,3 +289,35 @@ cdef class TransitionSystem:
self.cfg.update(msg['cfg']) self.cfg.update(msg['cfg'])
self.initialize_actions(labels) self.initialize_actions(labels)
return self return self
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
int batch_size) nogil:
cdef int i
cdef Transition action
cdef StateC* state
for i in range(batch_size):
state = states[i]
action = moves.c[actions[i]]
action.do(state, action.label)
state.history.push_back(action.clas)
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
int nr_class, int batch_size) nogil:
is_valid = <int*>calloc(moves.n_moves, sizeof(int))
cdef int i, guess
cdef Transition action
for i in range(batch_size):
moves.set_valid(is_valid, states[i])
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
if guess == -1:
# This shouldn't happen, but it's hard to raise an error here,
# and we don't want to infinite loop. So, force to end state.
states[i].force_final()
else:
action = moves.c[guess]
action.do(states[i], action.label)
states[i].history.push_back(guess)
free(is_valid)

View File

@ -4,8 +4,8 @@ from typing import Optional, Iterable, Callable
from thinc.api import Model, Config from thinc.api import Model, Config
from ._parser_internals.transition_system import TransitionSystem from ._parser_internals.transition_system import TransitionSystem
from .transition_parser cimport Parser from .transition_parser import Parser
from ._parser_internals.arc_eager cimport ArcEager from ._parser_internals.arc_eager import ArcEager
from .functions import merge_subtokens from .functions import merge_subtokens
from ..language import Language from ..language import Language
@ -18,12 +18,11 @@ from ..util import registry
default_model_config = """ default_model_config = """
[model] [model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "parser" state_type = "parser"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 64 hidden_width = 64
maxout_pieces = 2 maxout_pieces = 2
use_upper = true
[model.tok2vec] [model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2" @architectures = "spacy.HashEmbedCNN.v2"
@ -123,6 +122,7 @@ def make_parser(
scorer=scorer, scorer=scorer,
) )
@Language.factory( @Language.factory(
"beam_parser", "beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"], assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
@ -228,6 +228,7 @@ def parser_score(examples, **kwargs):
DOCS: https://spacy.io/api/dependencyparser#score DOCS: https://spacy.io/api/dependencyparser#score
""" """
def has_sents(doc): def has_sents(doc):
return doc.has_annotation("SENT_START") return doc.has_annotation("SENT_START")
@ -235,8 +236,11 @@ def parser_score(examples, **kwargs):
dep = getattr(token, attr) dep = getattr(token, attr)
dep = token.vocab.strings.as_string(dep).lower() dep = token.vocab.strings.as_string(dep).lower()
return dep return dep
results = {} results = {}
results.update(Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)) results.update(
Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
)
kwargs.setdefault("getter", dep_getter) kwargs.setdefault("getter", dep_getter)
kwargs.setdefault("ignore_labels", ("p", "punct")) kwargs.setdefault("ignore_labels", ("p", "punct"))
results.update(Scorer.score_deps(examples, "dep", **kwargs)) results.update(Scorer.score_deps(examples, "dep", **kwargs))
@ -249,11 +253,12 @@ def make_parser_scorer():
return parser_score return parser_score
cdef class DependencyParser(Parser): class DependencyParser(Parser):
"""Pipeline component for dependency parsing. """Pipeline component for dependency parsing.
DOCS: https://spacy.io/api/dependencyparser DOCS: https://spacy.io/api/dependencyparser
""" """
TransitionSystem = ArcEager TransitionSystem = ArcEager
def __init__( def __init__(
@ -273,8 +278,7 @@ cdef class DependencyParser(Parser):
incorrect_spans_key=None, incorrect_spans_key=None,
scorer=parser_score, scorer=parser_score,
): ):
"""Create a DependencyParser. """Create a DependencyParser."""
"""
super().__init__( super().__init__(
vocab, vocab,
model, model,

View File

@ -4,22 +4,22 @@ from typing import Optional, Iterable, Callable
from thinc.api import Model, Config from thinc.api import Model, Config
from ._parser_internals.transition_system import TransitionSystem from ._parser_internals.transition_system import TransitionSystem
from .transition_parser cimport Parser from .transition_parser import Parser
from ._parser_internals.ner cimport BiluoPushDown from ._parser_internals.ner import BiluoPushDown
from ..language import Language from ..language import Language
from ..scorer import get_ner_prf, PRFScore from ..scorer import get_ner_prf, PRFScore
from ..training import validate_examples
from ..util import registry from ..util import registry
from ..training import remove_bilu_prefix from ..training import remove_bilu_prefix
default_model_config = """ default_model_config = """
[model] [model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "ner" state_type = "ner"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 64 hidden_width = 64
maxout_pieces = 2 maxout_pieces = 2
use_upper = true
[model.tok2vec] [model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2" @architectures = "spacy.HashEmbedCNN.v2"
@ -44,8 +44,12 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
"incorrect_spans_key": None, "incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"}, "scorer": {"@scorers": "spacy.ner_scorer.v1"},
}, },
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None}, default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
) )
def make_ner( def make_ner(
nlp: Language, nlp: Language,
@ -98,6 +102,7 @@ def make_ner(
scorer=scorer, scorer=scorer,
) )
@Language.factory( @Language.factory(
"beam_ner", "beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"], assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
@ -111,7 +116,12 @@ def make_ner(
"incorrect_spans_key": None, "incorrect_spans_key": None,
"scorer": None, "scorer": None,
}, },
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None}, default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
) )
def make_beam_ner( def make_beam_ner(
nlp: Language, nlp: Language,
@ -185,11 +195,12 @@ def make_ner_scorer():
return ner_score return ner_score
cdef class EntityRecognizer(Parser): class EntityRecognizer(Parser):
"""Pipeline component for named entity recognition. """Pipeline component for named entity recognition.
DOCS: https://spacy.io/api/entityrecognizer DOCS: https://spacy.io/api/entityrecognizer
""" """
TransitionSystem = BiluoPushDown TransitionSystem = BiluoPushDown
def __init__( def __init__(
@ -207,8 +218,7 @@ cdef class EntityRecognizer(Parser):
incorrect_spans_key=None, incorrect_spans_key=None,
scorer=ner_score, scorer=ner_score,
): ):
"""Create an EntityRecognizer. """Create an EntityRecognizer."""
"""
super().__init__( super().__init__(
vocab, vocab,
model, model,

View File

@ -1,21 +0,0 @@
from cymem.cymem cimport Pool
from thinc.backends.cblas cimport CBlas
from ..vocab cimport Vocab
from .trainable_pipe cimport TrainablePipe
from ._parser_internals.transition_system cimport Transition, TransitionSystem
from ._parser_internals._state cimport StateC
from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC
cdef class Parser(TrainablePipe):
cdef public object _rehearsal_model
cdef readonly TransitionSystem moves
cdef public object _multitasks
cdef object _cpu_ops
cdef void _parseC(self, CBlas cblas, StateC** states,
WeightsC weights, SizesC sizes) nogil
cdef void c_transition_batch(self, StateC** states, const float* scores,
int nr_class, int batch_size) nogil

View File

@ -8,26 +8,27 @@ from libcpp.vector cimport vector
from libc.string cimport memset, memcpy from libc.string cimport memset, memcpy
from libc.stdlib cimport calloc, free from libc.stdlib cimport calloc, free
import random import random
import contextlib
import srsly import srsly
from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps, Optimizer from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps, Optimizer
from thinc.api import chain, softmax_activation, use_ops from thinc.api import chain, softmax_activation, use_ops, get_array_module
from thinc.legacy import LegacySequenceCategoricalCrossentropy from thinc.legacy import LegacySequenceCategoricalCrossentropy
from thinc.types import Floats2d from thinc.types import Floats2d, Ints1d
import numpy.random import numpy.random
import numpy import numpy
import warnings import warnings
from ._parser_internals.stateclass cimport StateClass from ..ml.tb_framework import TransitionModelInputs
from ._parser_internals.stateclass cimport StateC, StateClass
from ._parser_internals.search cimport Beam from ._parser_internals.search cimport Beam
from ..ml.parser_model cimport alloc_activations, free_activations
from ..ml.parser_model cimport predict_states, arg_max_if_valid
from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
from ..ml.parser_model cimport get_c_weights, get_c_sizes
from ..tokens.doc cimport Doc from ..tokens.doc cimport Doc
from .trainable_pipe import TrainablePipe from .trainable_pipe cimport TrainablePipe
from ._parser_internals cimport _beam_utils from ._parser_internals cimport _beam_utils
from ._parser_internals import _beam_utils from ._parser_internals import _beam_utils
from ..vocab cimport Vocab
from ._parser_internals.transition_system cimport Transition, TransitionSystem
from ..typedefs cimport weight_t
from ..training import validate_examples, validate_get_examples from ..training import validate_examples, validate_get_examples
from ..training import validate_distillation_examples from ..training import validate_distillation_examples
@ -38,7 +39,7 @@ from .. import util
NUMPY_OPS = NumpyOps() NUMPY_OPS = NumpyOps()
cdef class Parser(TrainablePipe): class Parser(TrainablePipe):
""" """
Base class of the DependencyParser and EntityRecognizer. Base class of the DependencyParser and EntityRecognizer.
""" """
@ -138,8 +139,9 @@ cdef class Parser(TrainablePipe):
@property @property
def move_names(self): def move_names(self):
names = [] names = []
cdef TransitionSystem moves = self.moves
for i in range(self.moves.n_moves): for i in range(self.moves.n_moves):
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label) name = self.moves.move_name(moves.c[i].move, moves.c[i].label)
# Explicitly removing the internal "U-" token used for blocking entities # Explicitly removing the internal "U-" token used for blocking entities
if name != "U-": if name != "U-":
names.append(name) names.append(name)
@ -245,15 +247,6 @@ cdef class Parser(TrainablePipe):
student_docs = [eg.predicted for eg in examples] student_docs = [eg.predicted for eg in examples]
teacher_step_model = teacher_pipe.model.predict([eg.reference for eg in examples])
student_step_model, backprop_tok2vec = self.model.begin_update(student_docs)
# Add softmax activation, so that we can compute student losses
# with cross-entropy loss.
with use_ops("numpy"):
teacher_model = chain(teacher_step_model, softmax_activation())
student_model = chain(student_step_model, softmax_activation())
max_moves = self.cfg["update_with_oracle_cut_size"] max_moves = self.cfg["update_with_oracle_cut_size"]
if max_moves >= 1: if max_moves >= 1:
# Chop sequences into lengths of this many words, to make the # Chop sequences into lengths of this many words, to make the
@ -261,51 +254,39 @@ cdef class Parser(TrainablePipe):
# sequence, we use the teacher's predictions as the gold # sequence, we use the teacher's predictions as the gold
# standard. # standard.
max_moves = int(random.uniform(max_moves // 2, max_moves * 2)) max_moves = int(random.uniform(max_moves // 2, max_moves * 2))
states = self._init_batch(teacher_step_model, student_docs, max_moves) states = self._init_batch(teacher_pipe, student_docs, max_moves)
else: else:
states = self.moves.init_batch(student_docs) states = self.moves.init_batch(student_docs)
loss = 0.0 # We distill as follows: 1. we first let the student predict transition
n_moves = 0 # sequences (and the corresponding transition probabilities); (2) we
while states: # let the teacher follow the student's predicted transition sequences
# We do distillation as follows: (1) for every state, we compute the # to obtain the teacher's transition probabilities; (3) we compute the
# transition softmax distributions: (2) we backpropagate the error of # gradients of the student's transition distributions relative to the
# the student (compared to the teacher) into the student model; (3) # teacher's distributions.
# for all states, we move to the next state using the student's
# predictions.
teacher_scores = teacher_model.predict(states)
student_scores, backprop = student_model.begin_update(states)
state_loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
backprop(d_scores)
loss += state_loss
self.transition_states(states, student_scores)
states = [state for state in states if not state.is_final()]
# Stop when we reach the maximum number of moves, otherwise we start student_inputs = TransitionModelInputs(docs=student_docs, moves=self.moves,
# to process the remainder of cut sequences again. max_moves=max_moves)
if max_moves >= 1 and n_moves >= max_moves: (student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
break actions = states2actions(student_states)
n_moves += 1 teacher_inputs = TransitionModelInputs(docs=[eg.reference for eg in examples],
moves=self.moves, actions=actions)
(_, teacher_scores) = teacher_pipe.model.predict(teacher_inputs)
backprop_tok2vec(student_docs) loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
backprop_scores((student_states, d_scores))
if sgd is not None: if sgd is not None:
self.finish_update(sgd) self.finish_update(sgd)
losses[self.name] += loss losses[self.name] += loss
del backprop
del backprop_tok2vec
teacher_step_model.clear_memory()
student_step_model.clear_memory()
del teacher_model
del student_model
return losses return losses
def get_teacher_student_loss( def get_teacher_student_loss(
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d] self, teacher_scores: List[Floats2d], student_scores: List[Floats2d],
normalize: bool=False,
) -> Tuple[float, List[Floats2d]]: ) -> Tuple[float, List[Floats2d]]:
"""Calculate the loss and its gradient for a batch of student """Calculate the loss and its gradient for a batch of student
scores, relative to teacher scores. scores, relative to teacher scores.
@ -317,10 +298,28 @@ cdef class Parser(TrainablePipe):
DOCS: https://spacy.io/api/dependencyparser#get_teacher_student_loss DOCS: https://spacy.io/api/dependencyparser#get_teacher_student_loss
""" """
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
d_scores, loss = loss_func(student_scores, teacher_scores) # We can't easily hook up a softmax layer in the parsing model, since
if self.model.ops.xp.isnan(loss): # the get_loss does additional masking. So, we could apply softmax
raise ValueError(Errors.E910.format(name=self.name)) # manually here and use Thinc's cross-entropy loss. But it's a bit
# suboptimal, since we can have a lot of states that would result in
# many kernel launches. Futhermore the parsing model's backprop expects
# a XP array, so we'd have to concat the softmaxes anyway. So, like
# the get_loss implementation, we'll compute the loss and gradients
# ourselves.
teacher_scores = self.model.ops.softmax(self.model.ops.xp.vstack(teacher_scores),
axis=-1, inplace=True)
student_scores = self.model.ops.softmax(self.model.ops.xp.vstack(student_scores),
axis=-1, inplace=True)
assert teacher_scores.shape == student_scores.shape
d_scores = student_scores - teacher_scores
if normalize:
d_scores /= d_scores.shape[0]
loss = (d_scores**2).sum() / d_scores.size
return float(loss), d_scores return float(loss), d_scores
def init_multitask_objectives(self, get_examples, pipeline, **cfg): def init_multitask_objectives(self, get_examples, pipeline, **cfg):
@ -343,9 +342,6 @@ cdef class Parser(TrainablePipe):
stream: The sequence of documents to process. stream: The sequence of documents to process.
batch_size (int): Number of documents to accumulate into a working set. batch_size (int): Number of documents to accumulate into a working set.
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
deals with a failing batch of documents. The default function just reraises
the exception.
YIELDS (Doc): Documents, in order. YIELDS (Doc): Documents, in order.
""" """
@ -367,78 +363,29 @@ cdef class Parser(TrainablePipe):
def predict(self, docs): def predict(self, docs):
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
self._ensure_labels_are_added(docs)
if not any(len(doc) for doc in docs): if not any(len(doc) for doc in docs):
result = self.moves.init_batch(docs) result = self.moves.init_batch(docs)
return result return result
if self.cfg["beam_width"] == 1: with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
return self.greedy_parse(docs, drop=0.0) inputs = TransitionModelInputs(docs=docs, moves=self.moves)
else: states_or_beams, _ = self.model.predict(inputs)
return self.beam_parse( return states_or_beams
docs,
drop=0.0,
beam_width=self.cfg["beam_width"],
beam_density=self.cfg["beam_density"]
)
def greedy_parse(self, docs, drop=0.): def greedy_parse(self, docs, drop=0.):
cdef vector[StateC*] states self._resize()
cdef StateClass state
cdef CBlas cblas = self._cpu_ops.cblas()
self._ensure_labels_are_added(docs) self._ensure_labels_are_added(docs)
set_dropout_rate(self.model, drop) with _change_attrs(self.model, beam_width=1):
batch = self.moves.init_batch(docs) inputs = TransitionModelInputs(docs=docs, moves=self.moves)
model = self.model.predict(docs) states, _ = self.model.predict(inputs)
weights = get_c_weights(model) return states
for state in batch:
if not state.is_final():
states.push_back(state.c)
sizes = get_c_sizes(model, states.size())
with nogil:
self._parseC(cblas, &states[0], weights, sizes)
model.clear_memory()
del model
return batch
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.): def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
cdef Beam beam
cdef Doc doc
self._ensure_labels_are_added(docs) self._ensure_labels_are_added(docs)
batch = _beam_utils.BeamBatch( with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
self.moves, inputs = TransitionModelInputs(docs=docs, moves=self.moves)
self.moves.init_batch(docs), beams, _ = self.model.predict(inputs)
None, return beams
beam_width,
density=beam_density
)
model = self.model.predict(docs)
while not batch.is_done:
states = batch.get_unfinished_states()
if not states:
break
scores = model.predict(states)
batch.advance(scores)
model.clear_memory()
del model
return list(batch)
cdef void _parseC(self, CBlas cblas, StateC** states,
WeightsC weights, SizesC sizes) nogil:
cdef int i, j
cdef vector[StateC*] unfinished
cdef ActivationsC activations = alloc_activations(sizes)
while sizes.states >= 1:
predict_states(cblas, &activations, states, &weights, sizes)
# Validate actions, argmax, take action.
self.c_transition_batch(states,
activations.scores, sizes.classes, sizes.states)
for i in range(sizes.states):
if not states[i].is_final():
unfinished.push_back(states[i])
for i in range(unfinished.size()):
states[i] = unfinished[i]
sizes.states = unfinished.size()
unfinished.clear()
free_activations(&activations)
def set_annotations(self, docs, states_or_beams): def set_annotations(self, docs, states_or_beams):
cdef StateClass state cdef StateClass state
@ -450,35 +397,6 @@ cdef class Parser(TrainablePipe):
for hook in self.postprocesses: for hook in self.postprocesses:
hook(doc) hook(doc)
def transition_states(self, states, float[:, ::1] scores):
cdef StateClass state
cdef float* c_scores = &scores[0, 0]
cdef vector[StateC*] c_states
for state in states:
c_states.push_back(state.c)
self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0])
return [state for state in states if not state.c.is_final()]
cdef void c_transition_batch(self, StateC** states, const float* scores,
int nr_class, int batch_size) nogil:
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
with gil:
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
is_valid = <int*>calloc(self.moves.n_moves, sizeof(int))
cdef int i, guess
cdef Transition action
for i in range(batch_size):
self.moves.set_valid(is_valid, states[i])
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
if guess == -1:
# This shouldn't happen, but it's hard to raise an error here,
# and we don't want to infinite loop. So, force to end state.
states[i].force_final()
else:
action = self.moves.c[guess]
action.do(states[i], action.label)
free(is_valid)
def update(self, examples, *, drop=0., sgd=None, losses=None): def update(self, examples, *, drop=0., sgd=None, losses=None):
cdef StateClass state cdef StateClass state
if losses is None: if losses is None:
@ -490,67 +408,99 @@ cdef class Parser(TrainablePipe):
) )
for multitask in self._multitasks: for multitask in self._multitasks:
multitask.update(examples, drop=drop, sgd=sgd) multitask.update(examples, drop=drop, sgd=sgd)
# We need to take care to act on the whole batch, because we might be
# getting vectors via a listener.
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)]) n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
if n_examples == 0: if n_examples == 0:
return losses return losses
set_dropout_rate(self.model, drop) set_dropout_rate(self.model, drop)
# The probability we use beam update, instead of falling back to docs = [eg.x for eg in examples if len(eg.x)]
# a greedy update
beam_update_prob = self.cfg["beam_update_prob"]
if self.cfg['beam_width'] >= 2 and numpy.random.random() < beam_update_prob:
return self.update_beam(
examples,
beam_width=self.cfg["beam_width"],
sgd=sgd,
losses=losses,
beam_density=self.cfg["beam_density"]
)
max_moves = self.cfg["update_with_oracle_cut_size"] max_moves = self.cfg["update_with_oracle_cut_size"]
if max_moves >= 1: if max_moves >= 1:
# Chop sequences into lengths of this many words, to make the # Chop sequences into lengths of this many words, to make the
# batch uniform length. # batch uniform length.
max_moves = int(random.uniform(max_moves // 2, max_moves * 2)) max_moves = int(random.uniform(max(max_moves // 2, 1), max_moves * 2))
states, golds, _ = self._init_gold_batch( init_states, gold_states, _ = self._init_gold_batch(
examples, examples,
max_length=max_moves max_length=max_moves
) )
else: else:
states, golds, _ = self.moves.init_gold_batch(examples) init_states, gold_states, _ = self.moves.init_gold_batch(examples)
if not states:
inputs = TransitionModelInputs(docs=docs, moves=self.moves,
max_moves=max_moves, states=[state.copy() for state in init_states])
(pred_states, scores), backprop_scores = self.model.begin_update(inputs)
if sum(s.shape[0] for s in scores) == 0:
return losses return losses
model, backprop_tok2vec = self.model.begin_update([eg.x for eg in examples]) d_scores = self.get_loss((gold_states, init_states, pred_states, scores),
examples, max_moves)
all_states = list(states) backprop_scores((pred_states, d_scores))
states_golds = list(zip(states, golds))
n_moves = 0
while states_golds:
states, golds = zip(*states_golds)
scores, backprop = model.begin_update(states)
d_scores = self.get_batch_loss(states, golds, scores, losses)
# Note that the gradient isn't normalized by the batch size
# here, because our "samples" are really the states...But we
# can't normalize by the number of states either, as then we'd
# be getting smaller gradients for states in long sequences.
backprop(d_scores)
# Follow the predicted action
self.transition_states(states, scores)
states_golds = [(s, g) for (s, g) in zip(states, golds) if not s.is_final()]
if max_moves >= 1 and n_moves >= max_moves:
break
n_moves += 1
backprop_tok2vec(golds)
if sgd not in (None, False): if sgd not in (None, False):
self.finish_update(sgd) self.finish_update(sgd)
losses[self.name] += float((d_scores**2).sum())
# Ugh, this is annoying. If we're working on GPU, we want to free the # Ugh, this is annoying. If we're working on GPU, we want to free the
# memory ASAP. It seems that Python doesn't necessarily get around to # memory ASAP. It seems that Python doesn't necessarily get around to
# removing these in time if we don't explicitly delete? It's confusing. # removing these in time if we don't explicitly delete? It's confusing.
del backprop del backprop_scores
del backprop_tok2vec
model.clear_memory()
del model
return losses return losses
def get_loss(self, states_scores, examples, max_moves):
gold_states, init_states, pred_states, scores = states_scores
scores = self.model.ops.xp.vstack(scores)
costs = self._get_costs_from_histories(
examples,
gold_states,
init_states,
[list(state.history) for state in pred_states],
max_moves
)
xp = get_array_module(scores)
best_costs = costs.min(axis=1, keepdims=True)
gscores = scores.copy()
min_score = scores.min() - 1000
assert costs.shape == scores.shape, (costs.shape, scores.shape)
gscores[costs > best_costs] = min_score
max_ = scores.max(axis=1, keepdims=True)
gmax = gscores.max(axis=1, keepdims=True)
exp_scores = xp.exp(scores - max_)
exp_gscores = xp.exp(gscores - gmax)
Z = exp_scores.sum(axis=1, keepdims=True)
gZ = exp_gscores.sum(axis=1, keepdims=True)
d_scores = exp_scores / Z
d_scores -= (costs <= best_costs) * (exp_gscores / gZ)
return d_scores
def _get_costs_from_histories(self, examples, gold_states, init_states, histories, max_moves):
cdef TransitionSystem moves = self.moves
cdef StateClass state
cdef int clas
cdef int nF = self.model.get_dim("nF")
cdef int nO = moves.n_moves
cdef int nS = sum([len(history) for history in histories])
cdef Pool mem = Pool()
cdef np.ndarray costs_i
is_valid = <int*>mem.alloc(nO, sizeof(int))
batch = list(zip(init_states, histories, gold_states))
n_moves = 0
output = []
while batch:
costs = numpy.zeros((len(batch), nO), dtype="f")
for i, (state, history, gold) in enumerate(batch):
costs_i = costs[i]
clas = history.pop(0)
moves.set_costs(is_valid, <weight_t*>costs_i.data, state.c, gold)
action = moves.c[clas]
action.do(state.c, action.label)
state.c.history.push_back(clas)
output.append(costs)
batch = [(s, h, g) for s, h, g in batch if len(h) != 0]
if n_moves >= max_moves >= 1:
break
n_moves += 1
return self.model.ops.xp.vstack(output)
def rehearse(self, examples, sgd=None, losses=None, **cfg): def rehearse(self, examples, sgd=None, losses=None, **cfg):
"""Perform a "rehearsal" update, to prevent catastrophic forgetting.""" """Perform a "rehearsal" update, to prevent catastrophic forgetting."""
if losses is None: if losses is None:
@ -560,10 +510,9 @@ cdef class Parser(TrainablePipe):
multitask.rehearse(examples, losses=losses, sgd=sgd) multitask.rehearse(examples, losses=losses, sgd=sgd)
if self._rehearsal_model is None: if self._rehearsal_model is None:
return None return None
losses.setdefault(self.name, 0.) losses.setdefault(self.name, 0.0)
validate_examples(examples, "Parser.rehearse") validate_examples(examples, "Parser.rehearse")
docs = [eg.predicted for eg in examples] docs = [eg.predicted for eg in examples]
states = self.moves.init_batch(docs)
# This is pretty dirty, but the NER can resize itself in init_batch, # This is pretty dirty, but the NER can resize itself in init_batch,
# if labels are missing. We therefore have to check whether we need to # if labels are missing. We therefore have to check whether we need to
# expand our model output. # expand our model output.
@ -571,85 +520,33 @@ cdef class Parser(TrainablePipe):
# Prepare the stepwise model, and get the callback for finishing the batch # Prepare the stepwise model, and get the callback for finishing the batch
set_dropout_rate(self._rehearsal_model, 0.0) set_dropout_rate(self._rehearsal_model, 0.0)
set_dropout_rate(self.model, 0.0) set_dropout_rate(self.model, 0.0)
tutor, _ = self._rehearsal_model.begin_update(docs) student_inputs = TransitionModelInputs(docs=docs, moves=self.moves)
model, backprop_tok2vec = self.model.begin_update(docs) (student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
n_scores = 0. actions = states2actions(student_states)
loss = 0. teacher_inputs = TransitionModelInputs(docs=docs, moves=self.moves, actions=actions)
while states: _, teacher_scores = self._rehearsal_model.predict(teacher_inputs)
targets, _ = tutor.begin_update(states)
guesses, backprop = model.begin_update(states) loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores, normalize=True)
d_scores = (guesses - targets) / targets.shape[0]
teacher_scores = self.model.ops.xp.vstack(teacher_scores)
student_scores = self.model.ops.xp.vstack(student_scores)
assert teacher_scores.shape == student_scores.shape
d_scores = (student_scores - teacher_scores) / teacher_scores.shape[0]
# If all weights for an output are 0 in the original model, don't # If all weights for an output are 0 in the original model, don't
# supervise that output. This allows us to add classes. # supervise that output. This allows us to add classes.
loss += (d_scores**2).sum() loss = (d_scores**2).sum() / d_scores.size
backprop(d_scores) backprop_scores((student_states, d_scores))
# Follow the predicted action
self.transition_states(states, guesses)
states = [state for state in states if not state.is_final()]
n_scores += d_scores.size
# Do the backprop
backprop_tok2vec(docs)
if sgd is not None: if sgd is not None:
self.finish_update(sgd) self.finish_update(sgd)
losses[self.name] += loss / n_scores losses[self.name] += loss
del backprop
del backprop_tok2vec
model.clear_memory()
tutor.clear_memory()
del model
del tutor
return losses return losses
def update_beam(self, examples, *, beam_width, def update_beam(self, examples, *, beam_width,
drop=0., sgd=None, losses=None, beam_density=0.0): drop=0., sgd=None, losses=None, beam_density=0.0):
states, golds, _ = self.moves.init_gold_batch(examples) raise NotImplementedError
if not states:
return losses
# Prepare the stepwise model, and get the callback for finishing the batch
model, backprop_tok2vec = self.model.begin_update(
[eg.predicted for eg in examples])
loss = _beam_utils.update_beam(
self.moves,
states,
golds,
model,
beam_width,
beam_density=beam_density,
)
losses[self.name] += loss
backprop_tok2vec(golds)
if sgd is not None:
self.finish_update(sgd)
def get_batch_loss(self, states, golds, float[:, ::1] scores, losses):
cdef StateClass state
cdef Pool mem = Pool()
cdef int i
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
dtype='f', order='C')
c_d_scores = <float*>d_scores.data
unseen_classes = self.model.attrs["unseen_classes"]
for i, (state, gold) in enumerate(zip(states, golds)):
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
memset(costs, 0, self.moves.n_moves * sizeof(float))
self.moves.set_costs(is_valid, costs, state.c, gold)
for j in range(self.moves.n_moves):
if costs[j] <= 0.0 and j in unseen_classes:
unseen_classes.remove(j)
cpu_log_loss(c_d_scores,
costs, is_valid, &scores[i, 0], d_scores.shape[1])
c_d_scores += d_scores.shape[1]
# Note that we don't normalize this. See comment in update() for why.
if losses is not None:
losses.setdefault(self.name, 0.)
losses[self.name] += (d_scores**2).sum()
return d_scores
def set_output(self, nO): def set_output(self, nO):
self.model.attrs["resize_output"](self.model, nO) self.model.attrs["resize_output"](self.model, nO)
@ -688,7 +585,7 @@ cdef class Parser(TrainablePipe):
for example in islice(get_examples(), 10): for example in islice(get_examples(), 10):
doc_sample.append(example.predicted) doc_sample.append(example.predicted)
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(doc_sample) self.model.initialize((doc_sample, self.moves))
if nlp is not None: if nlp is not None:
self.init_multitask_objectives(get_examples, nlp.pipeline) self.init_multitask_objectives(get_examples, nlp.pipeline)
@ -781,26 +678,27 @@ cdef class Parser(TrainablePipe):
def _init_gold_batch(self, examples, max_length): def _init_gold_batch(self, examples, max_length):
"""Make a square batch, of length equal to the shortest transition """Make a square batch, of length equal to the shortest transition
sequence or a cap. A long sequence or a cap. A long doc will get multiple states. Let's say we
doc will get multiple states. Let's say we have a doc of length 2*N, have a doc of length 2*N, where N is the shortest doc. We'll make
where N is the shortest doc. We'll make two states, one representing two states, one representing long_doc[:N], and another representing
long_doc[:N], and another representing long_doc[N:].""" long_doc[N:]."""
cdef: cdef:
StateClass start_state StateClass start_state
StateClass state StateClass state
Transition action Transition action
all_states = self.moves.init_batch([eg.predicted for eg in examples]) TransitionSystem moves = self.moves
all_states = moves.init_batch([eg.predicted for eg in examples])
states = [] states = []
golds = [] golds = []
to_cut = [] to_cut = []
for state, eg in zip(all_states, examples): for state, eg in zip(all_states, examples):
if self.moves.has_gold(eg) and not state.is_final(): if moves.has_gold(eg) and not state.is_final():
gold = self.moves.init_gold(state, eg) gold = moves.init_gold(state, eg)
if len(eg.x) < max_length: if len(eg.x) < max_length:
states.append(state) states.append(state)
golds.append(gold) golds.append(gold)
else: else:
oracle_actions = self.moves.get_oracle_sequence_from_state( oracle_actions = moves.get_oracle_sequence_from_state(
state.copy(), gold) state.copy(), gold)
to_cut.append((eg, state, gold, oracle_actions)) to_cut.append((eg, state, gold, oracle_actions))
if not to_cut: if not to_cut:
@ -810,13 +708,52 @@ cdef class Parser(TrainablePipe):
for i in range(0, len(oracle_actions), max_length): for i in range(0, len(oracle_actions), max_length):
start_state = state.copy() start_state = state.copy()
for clas in oracle_actions[i:i+max_length]: for clas in oracle_actions[i:i+max_length]:
action = self.moves.c[clas] action = moves.c[clas]
action.do(state.c, action.label) action.do(state.c, action.label)
if state.is_final(): if state.is_final():
break break
if self.moves.has_gold(eg, start_state.B(0), state.B(0)): if moves.has_gold(eg, start_state.B(0), state.B(0)):
states.append(start_state) states.append(start_state)
golds.append(gold) golds.append(gold)
if state.is_final(): if state.is_final():
break break
return states, golds, max_length return states, golds, max_length
@contextlib.contextmanager
def _change_attrs(model, **kwargs):
"""Temporarily modify a thinc model's attributes."""
unset = object()
old_attrs = {}
for key, value in kwargs.items():
old_attrs[key] = model.attrs.get(key, unset)
model.attrs[key] = value
yield model
for key, value in old_attrs.items():
if value is unset:
model.attrs.pop(key)
else:
model.attrs[key] = value
def states2actions(states: List[StateClass]) -> List[Ints1d]:
cdef int step
cdef StateClass state
cdef StateC* c_state
actions = []
while True:
step = len(actions)
step_actions = []
for state in states:
c_state = state.c
if step < c_state.history.size():
step_actions.append(c_state.history[step])
# We are done if we have exhausted all histories.
if len(step_actions) == 0:
break
actions.append(numpy.array(step_actions, dtype="i"))
return actions

View File

@ -13,6 +13,7 @@ from spacy.pipeline._parser_internals.ner import BiluoPushDown
from spacy.training import Example, iob_to_biluo, split_bilu_label from spacy.training import Example, iob_to_biluo, split_bilu_label
from spacy.tokens import Doc, Span from spacy.tokens import Doc, Span
from spacy.vocab import Vocab from spacy.vocab import Vocab
from thinc.api import fix_random_seed
import logging import logging
from ..util import make_tempdir from ..util import make_tempdir
@ -412,7 +413,7 @@ def test_train_empty():
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
ner = nlp.add_pipe("ner", last=True) ner = nlp.add_pipe("ner", last=True)
ner.add_label("PERSON") ner.add_label("PERSON")
nlp.initialize() nlp.initialize(get_examples=lambda: train_examples)
for itn in range(2): for itn in range(2):
losses = {} losses = {}
batches = util.minibatch(train_examples, size=8) batches = util.minibatch(train_examples, size=8)
@ -539,11 +540,11 @@ def test_block_ner():
assert [token.ent_type_ for token in doc] == expected_types assert [token.ent_type_ for token in doc] == expected_types
@pytest.mark.parametrize("use_upper", [True, False]) def test_overfitting_IO():
def test_overfitting_IO(use_upper): fix_random_seed(1)
# Simple test to try and quickly overfit the NER component # Simple test to try and quickly overfit the NER component
nlp = English() nlp = English()
ner = nlp.add_pipe("ner", config={"model": {"use_upper": use_upper}}) ner = nlp.add_pipe("ner", config={"model": {}})
train_examples = [] train_examples = []
for text, annotations in TRAIN_DATA: for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
@ -575,7 +576,6 @@ def test_overfitting_IO(use_upper):
assert ents2[0].label_ == "LOC" assert ents2[0].label_ == "LOC"
# Ensure that the predictions are still the same, even after adding a new label # Ensure that the predictions are still the same, even after adding a new label
ner2 = nlp2.get_pipe("ner") ner2 = nlp2.get_pipe("ner")
assert ner2.model.attrs["has_upper"] == use_upper
ner2.add_label("RANDOM_NEW_LABEL") ner2.add_label("RANDOM_NEW_LABEL")
doc3 = nlp2(test_text) doc3 = nlp2(test_text)
ents3 = doc3.ents ents3 = doc3.ents

View File

@ -1,13 +1,17 @@
import itertools
import pytest import pytest
import numpy
from numpy.testing import assert_equal from numpy.testing import assert_equal
from thinc.api import Adam from thinc.api import Adam
from spacy import registry, util from spacy import registry, util
from spacy.attrs import DEP, NORM from spacy.attrs import DEP, NORM
from spacy.lang.en import English from spacy.lang.en import English
from spacy.tokens import Doc
from spacy.training import Example from spacy.training import Example
from spacy.tokens import Doc
from spacy.vocab import Vocab from spacy.vocab import Vocab
from spacy import util, registry
from thinc.api import fix_random_seed
from ...pipeline import DependencyParser from ...pipeline import DependencyParser
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
@ -59,6 +63,8 @@ PARTIAL_DATA = [
), ),
] ]
PARSERS = ["parser"] # TODO: Test beam_parser when ready
eps = 0.1 eps = 0.1
@ -171,6 +177,57 @@ def test_parser_parse_one_word_sentence(en_vocab, en_parser, words):
assert doc[0].dep != 0 assert doc[0].dep != 0
def test_parser_apply_actions(en_vocab, en_parser):
words = ["I", "ate", "pizza"]
words2 = ["Eat", "more", "pizza", "!"]
doc1 = Doc(en_vocab, words=words)
doc2 = Doc(en_vocab, words=words2)
docs = [doc1, doc2]
moves = en_parser.moves
moves.add_action(0, "")
moves.add_action(1, "")
moves.add_action(2, "nsubj")
moves.add_action(3, "obj")
moves.add_action(2, "amod")
actions = [
numpy.array([0, 0], dtype="i"),
numpy.array([2, 0], dtype="i"),
numpy.array([0, 4], dtype="i"),
numpy.array([3, 3], dtype="i"),
numpy.array([1, 1], dtype="i"),
numpy.array([1, 1], dtype="i"),
numpy.array([0], dtype="i"),
numpy.array([1], dtype="i"),
]
states = moves.init_batch(docs)
active_states = states
for step_actions in actions:
active_states = moves.apply_actions(active_states, step_actions)
assert len(active_states) == 0
for (state, doc) in zip(states, docs):
moves.set_annotations(state, doc)
assert docs[0][0].head.i == 1
assert docs[0][0].dep_ == "nsubj"
assert docs[0][1].head.i == 1
assert docs[0][1].dep_ == "ROOT"
assert docs[0][2].head.i == 1
assert docs[0][2].dep_ == "obj"
assert docs[1][0].head.i == 0
assert docs[1][0].dep_ == "ROOT"
assert docs[1][1].head.i == 2
assert docs[1][1].dep_ == "amod"
assert docs[1][2].head.i == 0
assert docs[1][2].dep_ == "obj"
@pytest.mark.skip( @pytest.mark.skip(
reason="The step_through API was removed (but should be brought back)" reason="The step_through API was removed (but should be brought back)"
) )
@ -319,7 +376,7 @@ def test_parser_constructor(en_vocab):
DependencyParser(en_vocab, model) DependencyParser(en_vocab, model)
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"]) @pytest.mark.parametrize("pipe_name", PARSERS)
def test_incomplete_data(pipe_name): def test_incomplete_data(pipe_name):
# Test that the parser works with incomplete information # Test that the parser works with incomplete information
nlp = English() nlp = English()
@ -345,11 +402,15 @@ def test_incomplete_data(pipe_name):
assert doc[2].head.i == 1 assert doc[2].head.i == 1
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"]) @pytest.mark.parametrize(
def test_overfitting_IO(pipe_name): "pipe_name,max_moves", itertools.product(PARSERS, [0, 1, 5, 100])
)
def test_overfitting_IO(pipe_name, max_moves):
fix_random_seed(0)
# Simple test to try and quickly overfit the dependency parser (normal or beam) # Simple test to try and quickly overfit the dependency parser (normal or beam)
nlp = English() nlp = English()
parser = nlp.add_pipe(pipe_name) parser = nlp.add_pipe(pipe_name)
parser.cfg["update_with_oracle_cut_size"] = max_moves
train_examples = [] train_examples = []
for text, annotations in TRAIN_DATA: for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
@ -451,10 +512,12 @@ def test_distill():
@pytest.mark.parametrize( @pytest.mark.parametrize(
"parser_config", "parser_config",
[ [
# TransitionBasedParser V1 # TODO: re-enable after we have a spacy-legacy release for v4. See
({"@architectures": "spacy.TransitionBasedParser.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}), # https://github.com/explosion/spacy-legacy/pull/36
# TransitionBasedParser V2 #({"@architectures": "spacy.TransitionBasedParser.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}), ({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": False}),
({"@architectures": "spacy.TransitionBasedParser.v3", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2}),
], ],
) )
# fmt: on # fmt: on

View File

@ -382,7 +382,7 @@ cfg_string_multi = """
factory = "ner" factory = "ner"
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
[components.ner.model.tok2vec] [components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1" @architectures = "spacy.Tok2VecListener.v1"

View File

@ -122,33 +122,11 @@ width = ${components.tok2vec.model.width}
parser_config_string_upper = """ parser_config_string_upper = """
[model] [model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "parser" state_type = "parser"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 66 hidden_width = 66
maxout_pieces = 2 maxout_pieces = 2
use_upper = true
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 333
depth = 4
embed_size = 5555
window_size = 1
maxout_pieces = 7
subword_features = false
"""
parser_config_string_no_upper = """
[model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 66
maxout_pieces = 2
use_upper = false
[model.tok2vec] [model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1" @architectures = "spacy.HashEmbedCNN.v1"
@ -179,7 +157,6 @@ def my_parser():
extra_state_tokens=True, extra_state_tokens=True,
hidden_width=65, hidden_width=65,
maxout_pieces=5, maxout_pieces=5,
use_upper=True,
) )
return parser return parser
@ -285,15 +262,16 @@ def test_serialize_custom_nlp():
nlp.to_disk(d) nlp.to_disk(d)
nlp2 = spacy.load(d) nlp2 = spacy.load(d)
model = nlp2.get_pipe("parser").model model = nlp2.get_pipe("parser").model
model.get_ref("tok2vec") assert model.get_ref("tok2vec") is not None
# check that we have the correct settings, not the default ones assert model.has_param("hidden_W")
assert model.get_ref("upper").get_dim("nI") == 65 assert model.has_param("hidden_b")
assert model.get_ref("lower").get_dim("nI") == 65 output = model.get_ref("output")
assert output is not None
assert output.has_param("W")
assert output.has_param("b")
@pytest.mark.parametrize( @pytest.mark.parametrize("parser_config_string", [parser_config_string_upper])
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
)
def test_serialize_parser(parser_config_string): def test_serialize_parser(parser_config_string):
"""Create a non-default parser config to check nlp serializes it correctly""" """Create a non-default parser config to check nlp serializes it correctly"""
nlp = English() nlp = English()
@ -306,11 +284,13 @@ def test_serialize_parser(parser_config_string):
nlp.to_disk(d) nlp.to_disk(d)
nlp2 = spacy.load(d) nlp2 = spacy.load(d)
model = nlp2.get_pipe("parser").model model = nlp2.get_pipe("parser").model
model.get_ref("tok2vec") assert model.get_ref("tok2vec") is not None
# check that we have the correct settings, not the default ones assert model.has_param("hidden_W")
if model.attrs["has_upper"]: assert model.has_param("hidden_b")
assert model.get_ref("upper").get_dim("nI") == 66 output = model.get_ref("output")
assert model.get_ref("lower").get_dim("nI") == 66 assert output is not None
assert output.has_param("b")
assert output.has_param("W")
def test_config_nlp_roundtrip(): def test_config_nlp_roundtrip():
@ -457,9 +437,7 @@ def test_config_auto_fill_extra_fields():
load_model_from_config(nlp.config) load_model_from_config(nlp.config)
@pytest.mark.parametrize( @pytest.mark.parametrize("parser_config_string", [parser_config_string_upper])
"parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
)
def test_config_validate_literal(parser_config_string): def test_config_validate_literal(parser_config_string):
nlp = English() nlp = English()
config = Config().from_str(parser_config_string) config = Config().from_str(parser_config_string)

View File

@ -5,10 +5,8 @@ from pathlib import Path
from spacy.about import __version__ as spacy_version from spacy.about import __version__ as spacy_version
from spacy import util from spacy import util
from spacy import prefer_gpu, require_gpu, require_cpu from spacy import prefer_gpu, require_gpu, require_cpu
from spacy.ml._precomputable_affine import PrecomputableAffine from spacy.util import dot_to_object, SimpleFrozenList, import_file, to_ternary_int
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding from spacy.util import find_available_port
from spacy.util import dot_to_object, SimpleFrozenList, import_file
from spacy.util import to_ternary_int, find_available_port
from thinc.api import Config, Optimizer, ConfigValidationError from thinc.api import Config, Optimizer, ConfigValidationError
from thinc.api import get_current_ops, set_current_ops, NumpyOps, CupyOps, MPSOps from thinc.api import get_current_ops, set_current_ops, NumpyOps, CupyOps, MPSOps
from thinc.compat import has_cupy_gpu, has_torch_mps_gpu from thinc.compat import has_cupy_gpu, has_torch_mps_gpu
@ -81,34 +79,6 @@ def test_util_get_package_path(package):
assert isinstance(path, Path) assert isinstance(path, Path)
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
assert model.get_param("W").shape == (nF, nO, nP, nI)
tensor = model.ops.alloc((10, nI))
Y, get_dX = model.begin_update(tensor)
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
dY = model.ops.alloc((15, nO, nP))
ids = model.ops.alloc((15, nF))
ids[1, 2] = -1
dY[1] = 1
assert not model.has_grad("pad")
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
assert d_pad[0, 2, 0, 0] == 1.0
ids.fill(0.0)
dY.fill(0.0)
dY[0] = 0
ids[1, 2] = 0
ids[1, 1] = -1
ids[1, 0] = -1
dY[1] = 1
ids[2, 0] = -1
dY[2] = 5
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
assert d_pad[0, 0, 0, 0] == 6
assert d_pad[0, 1, 0, 0] == 1
assert d_pad[0, 2, 0, 0] == 0
def test_prefer_gpu(): def test_prefer_gpu():
current_ops = get_current_ops() current_ops = get_current_ops()
if has_cupy_gpu: if has_cupy_gpu:

View File

@ -1,5 +1,4 @@
from collections.abc import Iterable as IterableInstance from collections.abc import Iterable as IterableInstance
import warnings
import numpy import numpy
from murmurhash.mrmr cimport hash64 from murmurhash.mrmr cimport hash64

View File

@ -553,18 +553,17 @@ for a Tok2Vec layer.
## Parser & NER architectures {id="parser"} ## Parser & NER architectures {id="parser"}
### spacy.TransitionBasedParser.v2 {id="TransitionBasedParser",source="spacy/ml/models/parser.py"} ### spacy.TransitionBasedParser.v3 {id="TransitionBasedParser",source="spacy/ml/models/parser.py"}
> #### Example Config > #### Example Config
> >
> ```ini > ```ini
> [model] > [model]
> @architectures = "spacy.TransitionBasedParser.v2" > @architectures = "spacy.TransitionBasedParser.v3"
> state_type = "ner" > state_type = "ner"
> extra_state_tokens = false > extra_state_tokens = false
> hidden_width = 64 > hidden_width = 64
> maxout_pieces = 2 > maxout_pieces = 2
> use_upper = true
> >
> [model.tok2vec] > [model.tok2vec]
> @architectures = "spacy.HashEmbedCNN.v2" > @architectures = "spacy.HashEmbedCNN.v2"
@ -595,13 +594,12 @@ consists of either two or three subnetworks:
as action scores directly. as action scores directly.
| Name | Description | | Name | Description |
| -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ | | `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ |
| `state_type` | Which task to extract features for. Possible values are "ner" and "parser". ~~str~~ | | `state_type` | Which task to extract features for. Possible values are "ner" and "parser". ~~str~~ |
| `extra_state_tokens` | Whether to use an expanded feature set when extracting the state tokens. Slightly slower, but sometimes improves accuracy slightly. Defaults to `False`. ~~bool~~ | | `extra_state_tokens` | Whether to use an expanded feature set when extracting the state tokens. Slightly slower, but sometimes improves accuracy slightly. Defaults to `False`. ~~bool~~ |
| `hidden_width` | The width of the hidden layer. ~~int~~ | | `hidden_width` | The width of the hidden layer. ~~int~~ |
| `maxout_pieces` | How many pieces to use in the state prediction layer. Recommended values are `1`, `2` or `3`. If `1`, the maxout non-linearity is replaced with a [`Relu`](https://thinc.ai/docs/api-layers#relu) non-linearity if `use_upper` is `True`, and no non-linearity if `False`. ~~int~~ | | `maxout_pieces` | How many pieces to use in the state prediction layer. Recommended values are `1`, `2` or `3`. ~~int~~ |
| `use_upper` | Whether to use an additional hidden layer after the state vector in order to predict the action scores. It is recommended to set this to `False` for large pretrained models such as transformers, and `True` for smaller networks. The upper layer is computed on CPU, which becomes a bottleneck on larger GPU-based models, where it's also less necessary. ~~bool~~ |
| `nO` | The number of actions the model will predict between. Usually inferred from data at the beginning of training, or loaded from disk. ~~int~~ | | `nO` | The number of actions the model will predict between. Usually inferred from data at the beginning of training, or loaded from disk. ~~int~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Docs], List[List[Floats2d]]]~~ | | **CREATES** | The model using the architecture. ~~Model[List[Docs], List[List[Floats2d]]]~~ |
@ -610,7 +608,7 @@ consists of either two or three subnetworks:
[TransitionBasedParser.v1](/api/legacy#TransitionBasedParser_v1) had the exact [TransitionBasedParser.v1](/api/legacy#TransitionBasedParser_v1) had the exact
same signature, but the `use_upper` argument was `True` by default. same signature, but the `use_upper` argument was `True` by default.
</Accordion> </Accordion>
## Tagging architectures {id="tagger",source="spacy/ml/models/tagger.py"} ## Tagging architectures {id="tagger",source="spacy/ml/models/tagger.py"}

View File

@ -361,7 +361,7 @@ Module spacy.language
File /path/to/spacy/language.py (line 64) File /path/to/spacy/language.py (line 64)
[components.ner.model] [components.ner.model]
Registry @architectures Registry @architectures
Name spacy.TransitionBasedParser.v1 Name spacy.TransitionBasedParser.v3
Module spacy.ml.models.parser Module spacy.ml.models.parser
File /path/to/spacy/ml/models/parser.py (line 11) File /path/to/spacy/ml/models/parser.py (line 11)
[components.ner.model.tok2vec] [components.ner.model.tok2vec]
@ -371,7 +371,7 @@ Module spacy.ml.models.tok2vec
File /path/to/spacy/ml/models/tok2vec.py (line 16) File /path/to/spacy/ml/models/tok2vec.py (line 16)
[components.parser.model] [components.parser.model]
Registry @architectures Registry @architectures
Name spacy.TransitionBasedParser.v1 Name spacy.TransitionBasedParser.v3
Module spacy.ml.models.parser Module spacy.ml.models.parser
File /path/to/spacy/ml/models/parser.py (line 11) File /path/to/spacy/ml/models/parser.py (line 11)
[components.parser.model.tok2vec] [components.parser.model.tok2vec]
@ -696,7 +696,7 @@ scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100 update_with_oracle_cut_size = 100
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "ner" state_type = "ner"
extra_state_tokens = false extra_state_tokens = false
- hidden_width = 64 - hidden_width = 64
@ -719,7 +719,7 @@ scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100 update_with_oracle_cut_size = 100
[components.parser.model] [components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "parser" state_type = "parser"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 128 hidden_width = 128

View File

@ -225,7 +225,7 @@ the others, but may not be as accurate, especially if texts are short.
### spacy.TransitionBasedParser.v1 {id="TransitionBasedParser_v1"} ### spacy.TransitionBasedParser.v1 {id="TransitionBasedParser_v1"}
Identical to Identical to
[`spacy.TransitionBasedParser.v2`](/api/architectures#TransitionBasedParser) [`spacy.TransitionBasedParser.v3`](/api/architectures#TransitionBasedParser)
except the `use_upper` was set to `True` by default. except the `use_upper` was set to `True` by default.
## Layers {id="layers"} ## Layers {id="layers"}

View File

@ -140,7 +140,7 @@ factory = "tok2vec"
factory = "ner" factory = "ner"
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v1" @architectures = "spacy.TransitionBasedParser.v3"
[components.ner.model.tok2vec] [components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1" @architectures = "spacy.Tok2VecListener.v1"
@ -156,7 +156,7 @@ same. This makes them fully independent and doesn't require an upstream
factory = "ner" factory = "ner"
[components.ner.model] [components.ner.model]
@architectures = "spacy.TransitionBasedParser.v1" @architectures = "spacy.TransitionBasedParser.v3"
[components.ner.model.tok2vec] [components.ner.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2" @architectures = "spacy.Tok2Vec.v2"
@ -472,7 +472,7 @@ sneakily delegates to the `Transformer` pipeline component.
factory = "ner" factory = "ner"
[nlp.pipeline.ner.model] [nlp.pipeline.ner.model]
@architectures = "spacy.TransitionBasedParser.v1" @architectures = "spacy.TransitionBasedParser.v3"
state_type = "ner" state_type = "ner"
extra_state_tokens = false extra_state_tokens = false
hidden_width = 128 hidden_width = 128