Support spacy-legacy via the registry

This commit is contained in:
Ines Montani 2021-01-15 21:42:40 +11:00
parent 330f9818c0
commit a203e3dbb8
4 changed files with 44 additions and 181 deletions

View File

@ -463,6 +463,12 @@ class Errors:
"issue tracker: http://github.com/explosion/spaCy/issues") "issue tracker: http://github.com/explosion/spaCy/issues")
# TODO: fix numbering after merging develop into master # TODO: fix numbering after merging develop into master
E893 = ("Could not find function '{name}' in function registry '{reg_name}'. "
"If you're using a custom function, make sure the code is available. "
"If the function is provided by a third-party package, e.g. "
"spacy-transformers, make sure the package is installed in your "
"environment.\n\nAvailable names: {available}")
E894 = ("Unknown function registry: '{name}'.")
E895 = ("The 'textcat' component received gold-standard annotations with " E895 = ("The 'textcat' component received gold-standard annotations with "
"multiple labels per document. In spaCy 3 you should use the " "multiple labels per document. In spaCy 3 you should use the "
"'textcat_multilabel' component for this instead. " "'textcat_multilabel' component for this instead. "

View File

@ -4,15 +4,13 @@ from thinc.types import Floats2d
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention
from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum
from thinc.api import HashEmbed, with_array, with_cpu, uniqued from thinc.api import with_cpu, Relu, residual
from thinc.api import Relu, residual, expand_window
from thinc.layers.chain import init as init_chain from thinc.layers.chain import init as init_chain
from ...attrs import ID, ORTH, PREFIX, SUFFIX, SHAPE, LOWER from ...attrs import ORTH
from ...util import registry from ...util import registry
from ..extract_ngrams import extract_ngrams from ..extract_ngrams import extract_ngrams
from ..staticvectors import StaticVectors from ..staticvectors import StaticVectors
from ..featureextractor import FeatureExtractor
from ...tokens import Doc from ...tokens import Doc
from .tok2vec import get_tok2vec_width from .tok2vec import get_tok2vec_width
@ -115,104 +113,6 @@ def init_ensemble_textcat(model, X, Y) -> Model:
return model return model
# TODO: move to legacy
@registry.architectures.register("spacy.TextCatEnsemble.v1")
def build_text_classifier_v1(
width: int,
embed_size: int,
pretrained_vectors: Optional[bool],
exclusive_classes: bool,
ngram_size: int,
window_size: int,
conv_depth: int,
dropout: Optional[float],
nO: Optional[int] = None,
) -> Model:
# Don't document this yet, I'm not sure it's right.
cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
lower = HashEmbed(
nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout, seed=10
)
prefix = HashEmbed(
nO=width // 2,
nV=embed_size,
column=cols.index(PREFIX),
dropout=dropout,
seed=11,
)
suffix = HashEmbed(
nO=width // 2,
nV=embed_size,
column=cols.index(SUFFIX),
dropout=dropout,
seed=12,
)
shape = HashEmbed(
nO=width // 2,
nV=embed_size,
column=cols.index(SHAPE),
dropout=dropout,
seed=13,
)
width_nI = sum(layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
trained_vectors = FeatureExtractor(cols) >> with_array(
uniqued(
(lower | prefix | suffix | shape)
>> Maxout(nO=width, nI=width_nI, normalize=True),
column=cols.index(ORTH),
)
)
if pretrained_vectors:
static_vectors = StaticVectors(width)
vector_layer = trained_vectors | static_vectors
vectors_width = width * 2
else:
vector_layer = trained_vectors
vectors_width = width
tok2vec = vector_layer >> with_array(
Maxout(width, vectors_width, normalize=True)
>> residual(
(
expand_window(window_size=window_size)
>> Maxout(
nO=width, nI=width * ((window_size * 2) + 1), normalize=True
)
)
)
** conv_depth,
pad=conv_depth,
)
cnn_model = (
tok2vec
>> list2ragged()
>> ParametricAttention(width)
>> reduce_sum()
>> residual(Maxout(nO=width, nI=width))
>> Linear(nO=nO, nI=width)
>> Dropout(0.0)
)
linear_model = build_bow_text_classifier(
nO=nO,
ngram_size=ngram_size,
exclusive_classes=exclusive_classes,
no_output_layer=False,
)
nO_double = nO * 2 if nO else None
if exclusive_classes:
output_layer = Softmax(nO=nO, nI=nO_double)
else:
output_layer = Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic()
model = (linear_model | cnn_model) >> output_layer
model.set_ref("tok2vec", tok2vec)
if model.has_dim("nO") is not False:
model.set_dim("nO", nO)
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
model.attrs["multi_label"] = not exclusive_classes
return model
@registry.architectures.register("spacy.TextCatLowData.v1") @registry.architectures.register("spacy.TextCatLowData.v1")
def build_text_classifier_lowdata( def build_text_classifier_lowdata(
width: int, dropout: Optional[float], nO: Optional[int] = None width: int, dropout: Optional[float], nO: Optional[int] = None

View File

@ -87,28 +87,6 @@ def build_hash_embed_cnn_tok2vec(
) )
# TODO: archive
@registry.architectures.register("spacy.Tok2Vec.v1")
def _build_Tok2Vec_model(
embed: Model[List[Doc], List[Floats2d]],
encode: Model[List[Floats2d], List[Floats2d]],
) -> Model[List[Doc], List[Floats2d]]:
"""Construct a tok2vec model out of embedding and encoding subnetworks.
See https://explosion.ai/blog/deep-learning-formula-nlp
embed (Model[List[Doc], List[Floats2d]]): Embed tokens into context-independent
word vector representations.
encode (Model[List[Floats2d], List[Floats2d]]): Encode context into the
embeddings, using an architecture such as a CNN, BiLSTM or transformer.
"""
receptive_field = encode.attrs.get("receptive_field", 0)
tok2vec = chain(embed, with_array(encode, pad=receptive_field))
tok2vec.set_dim("nO", encode.get_dim("nO"))
tok2vec.set_ref("embed", embed)
tok2vec.set_ref("encode", encode)
return tok2vec
@registry.architectures.register("spacy.Tok2Vec.v2") @registry.architectures.register("spacy.Tok2Vec.v2")
def build_Tok2Vec_model( def build_Tok2Vec_model(
embed: Model[List[Doc], List[Floats2d]], embed: Model[List[Doc], List[Floats2d]],
@ -276,39 +254,6 @@ def CharacterEmbed(
return model return model
# TODO: archive
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def _MaxoutWindowEncoder(
width: int, window_size: int, maxout_pieces: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
"""Encode context using convolutions with maxout activation, layer
normalization and residual connections.
width (int): The input and output width. These are required to be the same,
to allow residual connections. This value will be determined by the
width of the inputs. Recommended values are between 64 and 300.
window_size (int): The number of words to concatenate around each token
to construct the convolution. Recommended value is 1.
maxout_pieces (int): The number of maxout pieces to use. Recommended
values are 2 or 3.
depth (int): The number of convolutional layers. Recommended value is 4.
"""
cnn = chain(
expand_window(window_size=window_size),
Maxout(
nO=width,
nI=width * ((window_size * 2) + 1),
nP=maxout_pieces,
dropout=0.0,
normalize=True,
),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
model.attrs["receptive_field"] = window_size * depth
return model
@registry.architectures.register("spacy.MaxoutWindowEncoder.v2") @registry.architectures.register("spacy.MaxoutWindowEncoder.v2")
def MaxoutWindowEncoder( def MaxoutWindowEncoder(
width: int, window_size: int, maxout_pieces: int, depth: int width: int, window_size: int, maxout_pieces: int, depth: int
@ -341,30 +286,6 @@ def MaxoutWindowEncoder(
return with_array(model, pad=receptive_field) return with_array(model, pad=receptive_field)
# TODO: archive
@registry.architectures.register("spacy.MishWindowEncoder.v1")
def _MishWindowEncoder(
width: int, window_size: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
"""Encode context using convolutions with mish activation, layer
normalization and residual connections.
width (int): The input and output width. These are required to be the same,
to allow residual connections. This value will be determined by the
width of the inputs. Recommended values are between 64 and 300.
window_size (int): The number of words to concatenate around each token
to construct the convolution. Recommended value is 1.
depth (int): The number of convolutional layers. Recommended value is 4.
"""
cnn = chain(
expand_window(window_size=window_size),
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
return model
@registry.architectures.register("spacy.MishWindowEncoder.v2") @registry.architectures.register("spacy.MishWindowEncoder.v2")
def MishWindowEncoder( def MishWindowEncoder(
width: int, window_size: int, depth: int width: int, window_size: int, depth: int

View File

@ -105,6 +105,42 @@ class registry(thinc.registry):
models = catalogue.create("spacy", "models", entry_points=True) models = catalogue.create("spacy", "models", entry_points=True)
cli = catalogue.create("spacy", "cli", entry_points=True) cli = catalogue.create("spacy", "cli", entry_points=True)
@classmethod
def get(cls, registry_name: str, func_name: str) -> Callable:
"""Get a registered function from the registry."""
# We're overwriting this classmethod so we're able to provide more
# specific error messages and implement a fallback to spacy-legacy.
if not hasattr(cls, registry_name):
raise ValueError(Errors.E894.format(name=registry_name))
reg = getattr(cls, registry_name)
try:
func = reg.get(func_name)
except catalogue.RegistryError:
if func_name.startswith("spacy."):
legacy_name = func_name.replace("spacy.", "spacy-legacy.")
try:
return reg.get(legacy_name)
except catalogue.RegistryError:
pass
available = ", ".join(sorted(reg.get_all().keys())) or "none"
raise ValueError(
Errors.E893.format(
name=func_name, reg_name=registry_name, available=available
)
) from None
return func
@classmethod
def has(cls, registry_name: str, func_name: str) -> bool:
"""Check whether a function is available in a registry."""
if not hasattr(cls, registry_name):
return False
reg = getattr(cls, registry_name)
if func_name.startswith("spacy."):
legacy_name = func_name.replace("spacy.", "spacy-legacy.")
return func_name in reg or legacy_name in reg
return func_name in reg
class SimpleFrozenDict(dict): class SimpleFrozenDict(dict):
"""Simplified implementation of a frozen dict, mainly used as default """Simplified implementation of a frozen dict, mainly used as default