Add predict paths to _ml models

This commit is contained in:
Matthew Honnibal 2017-08-21 23:23:29 +02:00
parent cec76801dc
commit a21d8f3f0b

View File

@ -218,7 +218,10 @@ def drop_layer(layer, factor=2.):
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
return wrap(drop_layer_fwd, layer)
model = wrap(drop_layer_fwd, layer)
model.predict = layer
return model
def Tok2Vec(width, embed_size, preprocess=None):
@ -382,10 +385,18 @@ def fine_tune(embedding, combine=None):
sgd(model._mem.weights, model._mem.gradient, key=model.id)
return [d_o * model.mix[0] for d_o in d_output]
return output, fine_tune_bwd
def fine_tune_predict(docs_tokvecs):
docs, tokvecs = docs_tokvecs
vecs = embedding(docs)
return [model.mix[0]*tv+model.mix[1]*v
for tv, v in zip(tokvecs, vecs)]
model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(0.5)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
model.predict = fine_tune_predict
return model