mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 20:52:23 +03:00
Merge remote-tracking branch 'upstream/develop' into feature/coref
This commit is contained in:
commit
a33d29441a
|
@ -43,8 +43,8 @@ scikit-learn
|
|||
|
||||
* Files: scorer.py
|
||||
|
||||
The following implementation of roc_auc_score() is adapted from
|
||||
scikit-learn, which is distributed under the following license:
|
||||
The implementation of roc_auc_score() is adapted from scikit-learn, which is
|
||||
distributed under the following license:
|
||||
|
||||
New BSD License
|
||||
|
||||
|
@ -77,3 +77,30 @@ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|||
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGE.
|
||||
|
||||
|
||||
pyvi
|
||||
----
|
||||
|
||||
* Files: lang/vi/__init__.py
|
||||
|
||||
The MIT License (MIT)
|
||||
Copyright (c) 2016 Viet-Trung Tran
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
of the Software, and to permit persons to whom the Software is furnished to do
|
||||
so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
|
|
@ -112,7 +112,9 @@ def package(
|
|||
msg.fail("Invalid pipeline meta.json")
|
||||
print("\n".join(errors))
|
||||
sys.exit(1)
|
||||
model_name = meta["lang"] + "_" + meta["name"]
|
||||
model_name = meta["name"]
|
||||
if not model_name.startswith(meta['lang'] + "_"):
|
||||
model_name = f"{meta['lang']}_{model_name}"
|
||||
model_name_v = model_name + "-" + meta["version"]
|
||||
main_path = output_dir / model_name_v
|
||||
package_path = main_path / model_name
|
||||
|
@ -294,7 +296,7 @@ def setup_package():
|
|||
|
||||
if __name__ == '__main__':
|
||||
setup_package()
|
||||
""".strip()
|
||||
""".lstrip()
|
||||
|
||||
|
||||
TEMPLATE_MANIFEST = """
|
||||
|
@ -314,4 +316,4 @@ __version__ = get_model_meta(Path(__file__).parent)['version']
|
|||
|
||||
def load(**overrides):
|
||||
return load_model_from_init_py(__file__, **overrides)
|
||||
""".strip()
|
||||
""".lstrip()
|
||||
|
|
|
@ -80,6 +80,8 @@ eval_frequency = 200
|
|||
score_weights = {}
|
||||
# Names of pipeline components that shouldn't be updated during training
|
||||
frozen_components = []
|
||||
# Names of pipeline components that should set annotations during training
|
||||
annotating_components = []
|
||||
# Location in the config where the dev corpus is defined
|
||||
dev_corpus = "corpora.dev"
|
||||
# Location in the config where the train corpus is defined
|
||||
|
|
|
@ -28,7 +28,7 @@ cdef class Candidate:
|
|||
|
||||
cdef class KnowledgeBase:
|
||||
cdef Pool mem
|
||||
cpdef readonly Vocab vocab
|
||||
cdef readonly Vocab vocab
|
||||
cdef int64_t entity_vector_length
|
||||
|
||||
# This maps 64bit keys (hash of unique entity string)
|
||||
|
|
|
@ -72,7 +72,7 @@ steste stesti stette stettero stetti stia stiamo stiano stiate sto su sua
|
|||
subito successivamente successivo sue sugl sugli sui sul sull sulla sulle
|
||||
sullo suo suoi
|
||||
|
||||
tale tali talvolta tanto te tempo ti titolo torino tra tranne tre trenta
|
||||
tale tali talvolta tanto te tempo ti titolo tra tranne tre trenta
|
||||
troppo trovato tu tua tue tuo tuoi tutta tuttavia tutte tutti tutto
|
||||
|
||||
uguali ulteriore ultimo un una uno uomo
|
||||
|
|
|
@ -1,8 +1,15 @@
|
|||
from typing import Any, Dict, Union
|
||||
from pathlib import Path
|
||||
import re
|
||||
import srsly
|
||||
import string
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from ...language import Language
|
||||
from ...tokens import Doc
|
||||
from ...util import DummyTokenizer, registry, load_config_from_str
|
||||
from ... import util
|
||||
|
||||
|
||||
DEFAULT_CONFIG = """
|
||||
|
@ -40,17 +47,108 @@ class VietnameseTokenizer(DummyTokenizer):
|
|||
|
||||
def __call__(self, text: str) -> Doc:
|
||||
if self.use_pyvi:
|
||||
words, spaces = self.ViTokenizer.spacy_tokenize(text)
|
||||
words = self.pyvi_tokenize(text)
|
||||
words, spaces = util.get_words_and_spaces(words, text)
|
||||
return Doc(self.vocab, words=words, spaces=spaces)
|
||||
else:
|
||||
words = []
|
||||
spaces = []
|
||||
for token in self.tokenizer(text):
|
||||
words.extend(list(token.text))
|
||||
spaces.extend([False] * len(token.text))
|
||||
spaces[-1] = bool(token.whitespace_)
|
||||
words, spaces = util.get_words_and_spaces(text.split(), text)
|
||||
return Doc(self.vocab, words=words, spaces=spaces)
|
||||
|
||||
# The methods pyvi_sylabelize_with_ws and pyvi_tokenize are adapted from
|
||||
# pyvi v0.1, MIT License, Copyright (c) 2016 Viet-Trung Tran.
|
||||
# See licenses/3rd_party_licenses.txt
|
||||
def pyvi_sylabelize_with_ws(self, text):
|
||||
"""Modified from pyvi to preserve whitespace and skip unicode
|
||||
normalization."""
|
||||
specials = [r"==>", r"->", r"\.\.\.", r">>"]
|
||||
digit = r"\d+([\.,_]\d+)+"
|
||||
email = r"([a-zA-Z0-9_.+-]+@([a-zA-Z0-9-]+\.)+[a-zA-Z0-9-]+)"
|
||||
web = r"\w+://[^\s]+"
|
||||
word = r"\w+"
|
||||
non_word = r"[^\w\s]"
|
||||
abbreviations = [
|
||||
r"[A-ZĐ]+\.",
|
||||
r"Tp\.",
|
||||
r"Mr\.",
|
||||
r"Mrs\.",
|
||||
r"Ms\.",
|
||||
r"Dr\.",
|
||||
r"ThS\.",
|
||||
]
|
||||
|
||||
patterns = []
|
||||
patterns.extend(abbreviations)
|
||||
patterns.extend(specials)
|
||||
patterns.extend([web, email])
|
||||
patterns.extend([digit, non_word, word])
|
||||
|
||||
patterns = r"(\s+|" + "|".join(patterns) + ")"
|
||||
tokens = re.findall(patterns, text, re.UNICODE)
|
||||
|
||||
return [token[0] for token in tokens]
|
||||
|
||||
def pyvi_tokenize(self, text):
|
||||
"""Modified from pyvi to preserve text and whitespace."""
|
||||
if len(text) == 0:
|
||||
return []
|
||||
elif text.isspace():
|
||||
return [text]
|
||||
segs = self.pyvi_sylabelize_with_ws(text)
|
||||
words = []
|
||||
preceding_ws = []
|
||||
for i, token in enumerate(segs):
|
||||
if not token.isspace():
|
||||
words.append(token)
|
||||
preceding_ws.append(
|
||||
"" if (i == 0 or not segs[i - 1].isspace()) else segs[i - 1]
|
||||
)
|
||||
labels = self.ViTokenizer.ViTokenizer.model.predict(
|
||||
[self.ViTokenizer.ViTokenizer.sent2features(words, False)]
|
||||
)
|
||||
token = words[0]
|
||||
tokens = []
|
||||
for i in range(1, len(labels[0])):
|
||||
if (
|
||||
labels[0][i] == "I_W"
|
||||
and words[i] not in string.punctuation
|
||||
and words[i - 1] not in string.punctuation
|
||||
and not words[i][0].isdigit()
|
||||
and not words[i - 1][0].isdigit()
|
||||
and not (words[i][0].istitle() and not words[i - 1][0].istitle())
|
||||
):
|
||||
token = token + preceding_ws[i] + words[i]
|
||||
else:
|
||||
tokens.append(token)
|
||||
token = words[i]
|
||||
tokens.append(token)
|
||||
return tokens
|
||||
|
||||
def _get_config(self) -> Dict[str, Any]:
|
||||
return {"use_pyvi": self.use_pyvi}
|
||||
|
||||
def _set_config(self, config: Dict[str, Any] = {}) -> None:
|
||||
self.use_pyvi = config.get("use_pyvi", False)
|
||||
|
||||
def to_bytes(self, **kwargs) -> bytes:
|
||||
serializers = {"cfg": lambda: srsly.json_dumps(self._get_config())}
|
||||
return util.to_bytes(serializers, [])
|
||||
|
||||
def from_bytes(self, data: bytes, **kwargs) -> "VietnameseTokenizer":
|
||||
deserializers = {"cfg": lambda b: self._set_config(srsly.json_loads(b))}
|
||||
util.from_bytes(data, deserializers, [])
|
||||
return self
|
||||
|
||||
def to_disk(self, path: Union[str, Path], **kwargs) -> None:
|
||||
path = util.ensure_path(path)
|
||||
serializers = {"cfg": lambda p: srsly.write_json(p, self._get_config())}
|
||||
return util.to_disk(path, serializers, [])
|
||||
|
||||
def from_disk(self, path: Union[str, Path], **kwargs) -> "VietnameseTokenizer":
|
||||
path = util.ensure_path(path)
|
||||
serializers = {"cfg": lambda p: self._set_config(srsly.read_json(p))}
|
||||
util.from_disk(path, serializers, [])
|
||||
return self
|
||||
|
||||
|
||||
class VietnameseDefaults(Language.Defaults):
|
||||
config = load_config_from_str(DEFAULT_CONFIG)
|
||||
|
|
|
@ -1074,6 +1074,7 @@ class Language:
|
|||
losses: Optional[Dict[str, float]] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
exclude: Iterable[str] = SimpleFrozenList(),
|
||||
annotates: Iterable[str] = SimpleFrozenList(),
|
||||
):
|
||||
"""Update the models in the pipeline.
|
||||
|
||||
|
@ -1081,10 +1082,13 @@ class Language:
|
|||
_: Should not be set - serves to catch backwards-incompatible scripts.
|
||||
drop (float): The dropout rate.
|
||||
sgd (Optimizer): An optimizer.
|
||||
losses (Dict[str, float]): Dictionary to update with the loss, keyed by component.
|
||||
losses (Dict[str, float]): Dictionary to update with the loss, keyed by
|
||||
component.
|
||||
component_cfg (Dict[str, Dict]): Config parameters for specific pipeline
|
||||
components, keyed by component name.
|
||||
exclude (Iterable[str]): Names of components that shouldn't be updated.
|
||||
annotates (Iterable[str]): Names of components that should set
|
||||
annotations on the predicted examples after updating.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary
|
||||
|
||||
DOCS: https://spacy.io/api/language#update
|
||||
|
@ -1103,15 +1107,16 @@ class Language:
|
|||
sgd = self._optimizer
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
pipe_kwargs = {}
|
||||
for i, (name, proc) in enumerate(self.pipeline):
|
||||
component_cfg.setdefault(name, {})
|
||||
pipe_kwargs[name] = deepcopy(component_cfg[name])
|
||||
component_cfg[name].setdefault("drop", drop)
|
||||
pipe_kwargs[name].setdefault("batch_size", self.batch_size)
|
||||
for name, proc in self.pipeline:
|
||||
if name in exclude or not hasattr(proc, "update"):
|
||||
continue
|
||||
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
||||
if sgd not in (None, False):
|
||||
for name, proc in self.pipeline:
|
||||
if name not in exclude and hasattr(proc, "update"):
|
||||
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
||||
if sgd not in (None, False):
|
||||
if (
|
||||
name not in exclude
|
||||
and hasattr(proc, "is_trainable")
|
||||
|
@ -1119,6 +1124,18 @@ class Language:
|
|||
and proc.model not in (True, False, None)
|
||||
):
|
||||
proc.finish_update(sgd)
|
||||
if name in annotates:
|
||||
for doc, eg in zip(
|
||||
_pipe(
|
||||
(eg.predicted for eg in examples),
|
||||
proc=proc,
|
||||
name=name,
|
||||
default_error_handler=self.default_error_handler,
|
||||
kwargs=pipe_kwargs[name],
|
||||
),
|
||||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
return losses
|
||||
|
||||
def rehearse(
|
||||
|
|
|
@ -1,14 +1,11 @@
|
|||
from cymem.cymem cimport Pool
|
||||
from preshed.maps cimport PreshMap, PreshMapArray
|
||||
from libc.stdint cimport uint64_t
|
||||
from murmurhash cimport mrmr
|
||||
from preshed.maps cimport PreshMap
|
||||
cimport numpy as np
|
||||
from libc.stdint cimport uint64_t
|
||||
|
||||
from .structs cimport TokenC, MorphAnalysisC
|
||||
from .structs cimport MorphAnalysisC
|
||||
from .strings cimport StringStore
|
||||
from .typedefs cimport hash_t, attr_t, flags_t
|
||||
from .parts_of_speech cimport univ_pos_t
|
||||
from . cimport symbols
|
||||
from .typedefs cimport attr_t, hash_t
|
||||
|
||||
|
||||
cdef class Morphology:
|
||||
|
@ -16,14 +13,6 @@ cdef class Morphology:
|
|||
cdef readonly StringStore strings
|
||||
cdef PreshMap tags # Keyed by hash, value is pointer to tag
|
||||
|
||||
cdef public object lemmatizer
|
||||
cdef readonly object tag_map
|
||||
cdef readonly object tag_names
|
||||
cdef readonly object reverse_index
|
||||
cdef readonly object _exc
|
||||
cdef readonly PreshMapArray _cache
|
||||
cdef readonly int n_tags
|
||||
|
||||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *
|
||||
cdef int insert(self, MorphAnalysisC tag) except -1
|
||||
|
||||
|
|
|
@ -1,20 +1,11 @@
|
|||
# cython: infer_types
|
||||
from libc.string cimport memset
|
||||
|
||||
import srsly
|
||||
from collections import Counter
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
from .attrs cimport POS, IS_SPACE
|
||||
from .parts_of_speech cimport SPACE
|
||||
from .lexeme cimport Lexeme
|
||||
from .attrs cimport POS
|
||||
|
||||
from .strings import get_string_id
|
||||
from .attrs import LEMMA, intify_attrs
|
||||
from .parts_of_speech import IDS as POS_IDS
|
||||
from .errors import Errors, Warnings
|
||||
from .util import ensure_path
|
||||
from .errors import Warnings
|
||||
from . import symbols
|
||||
|
||||
|
||||
|
|
|
@ -313,6 +313,7 @@ class ConfigSchemaTraining(BaseModel):
|
|||
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
||||
logger: Logger = Field(..., title="The logger to track training progress")
|
||||
frozen_components: List[str] = Field(..., title="Pipeline components that shouldn't be updated during training")
|
||||
annotating_components: List[str] = Field(..., title="Pipeline components that should set annotations during training")
|
||||
before_to_disk: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after training, before it's saved to disk")
|
||||
# fmt: on
|
||||
|
||||
|
|
|
@ -286,6 +286,12 @@ def ur_tokenizer():
|
|||
return get_lang_class("ur")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def vi_tokenizer():
|
||||
pytest.importorskip("pyvi")
|
||||
return get_lang_class("vi")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def yo_tokenizer():
|
||||
return get_lang_class("yo")().tokenizer
|
||||
|
|
0
spacy/tests/lang/vi/__init__.py
Normal file
0
spacy/tests/lang/vi/__init__.py
Normal file
33
spacy/tests/lang/vi/test_serialize.py
Normal file
33
spacy/tests/lang/vi/test_serialize.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
from spacy.lang.vi import Vietnamese
|
||||
from ...util import make_tempdir
|
||||
|
||||
|
||||
def test_vi_tokenizer_serialize(vi_tokenizer):
|
||||
tokenizer_bytes = vi_tokenizer.to_bytes()
|
||||
nlp = Vietnamese()
|
||||
nlp.tokenizer.from_bytes(tokenizer_bytes)
|
||||
assert tokenizer_bytes == nlp.tokenizer.to_bytes()
|
||||
assert nlp.tokenizer.use_pyvi is True
|
||||
|
||||
with make_tempdir() as d:
|
||||
file_path = d / "tokenizer"
|
||||
vi_tokenizer.to_disk(file_path)
|
||||
nlp = Vietnamese()
|
||||
nlp.tokenizer.from_disk(file_path)
|
||||
assert tokenizer_bytes == nlp.tokenizer.to_bytes()
|
||||
assert nlp.tokenizer.use_pyvi is True
|
||||
|
||||
# mode is (de)serialized correctly
|
||||
nlp = Vietnamese.from_config({"nlp": {"tokenizer": {"use_pyvi": False}}})
|
||||
nlp_bytes = nlp.to_bytes()
|
||||
nlp_r = Vietnamese()
|
||||
nlp_r.from_bytes(nlp_bytes)
|
||||
assert nlp_bytes == nlp_r.to_bytes()
|
||||
assert nlp_r.tokenizer.use_pyvi == False
|
||||
|
||||
with make_tempdir() as d:
|
||||
nlp.to_disk(d)
|
||||
nlp_r = Vietnamese()
|
||||
nlp_r.from_disk(d)
|
||||
assert nlp_bytes == nlp_r.to_bytes()
|
||||
assert nlp_r.tokenizer.use_pyvi == False
|
47
spacy/tests/lang/vi/test_tokenizer.py
Normal file
47
spacy/tests/lang/vi/test_tokenizer.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import pytest
|
||||
|
||||
from ...tokenizer.test_naughty_strings import NAUGHTY_STRINGS
|
||||
from spacy.lang.vi import Vietnamese
|
||||
|
||||
|
||||
# fmt: off
|
||||
TOKENIZER_TESTS = [
|
||||
("Đây là một văn bản bằng tiếng Việt Sau đó, đây là một văn bản khác bằng ngôn ngữ này", ['Đây', 'là', 'một', 'văn bản', 'bằng', 'tiếng', 'Việt', 'Sau', 'đó', ',', 'đây', 'là', 'một', 'văn bản', 'khác', 'bằng', 'ngôn ngữ', 'này']),
|
||||
]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS)
|
||||
def test_vi_tokenizer(vi_tokenizer, text, expected_tokens):
|
||||
tokens = [token.text for token in vi_tokenizer(text)]
|
||||
assert tokens == expected_tokens
|
||||
|
||||
|
||||
def test_vi_tokenizer_extra_spaces(vi_tokenizer):
|
||||
# note: three spaces after "I"
|
||||
tokens = vi_tokenizer("I like cheese.")
|
||||
assert tokens[1].orth_ == " "
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", NAUGHTY_STRINGS)
|
||||
def test_vi_tokenizer_naughty_strings(vi_tokenizer, text):
|
||||
tokens = vi_tokenizer(text)
|
||||
assert tokens.text_with_ws == text
|
||||
|
||||
|
||||
def test_vi_tokenizer_emptyish_texts(vi_tokenizer):
|
||||
doc = vi_tokenizer("")
|
||||
assert len(doc) == 0
|
||||
doc = vi_tokenizer(" ")
|
||||
assert len(doc) == 1
|
||||
doc = vi_tokenizer("\n\n\n \t\t \n\n\n")
|
||||
assert len(doc) == 1
|
||||
|
||||
|
||||
def test_vi_tokenizer_no_pyvi():
|
||||
"""Test for whitespace tokenization without pyvi"""
|
||||
nlp = Vietnamese.from_config({"nlp": {"tokenizer": {"use_pyvi": False}}})
|
||||
text = "Đây là một văn bản bằng tiếng Việt Sau đó, đây là một văn bản khác bằng ngôn ngữ này"
|
||||
doc = nlp(text)
|
||||
assert [t.text for t in doc if not t.is_space] == text.split()
|
||||
assert doc[4].text == " "
|
113
spacy/tests/pipeline/test_annotates_on_update.py
Normal file
113
spacy/tests/pipeline/test_annotates_on_update.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
from typing import Callable, Iterable, Iterator
|
||||
import pytest
|
||||
import io
|
||||
|
||||
from thinc.api import Config
|
||||
from spacy.language import Language
|
||||
from spacy.training import Example
|
||||
from spacy.training.loop import train
|
||||
from spacy.lang.en import English
|
||||
from spacy.util import registry, load_model_from_config
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def config_str():
|
||||
return """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["sentencizer","assert_sents"]
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.assert_sents]
|
||||
factory = "assert_sents"
|
||||
|
||||
[components.sentencizer]
|
||||
factory = "sentencizer"
|
||||
punct_chars = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
annotating_components = ["sentencizer"]
|
||||
max_steps = 2
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "unannotated_corpus"
|
||||
|
||||
[corpora.train]
|
||||
@readers = "unannotated_corpus"
|
||||
"""
|
||||
|
||||
|
||||
def test_annotates_on_update():
|
||||
# The custom component checks for sentence annotation
|
||||
@Language.factory("assert_sents", default_config={})
|
||||
def assert_sents(nlp, name):
|
||||
return AssertSents(name)
|
||||
|
||||
class AssertSents:
|
||||
def __init__(self, name, **cfg):
|
||||
self.name = name
|
||||
pass
|
||||
|
||||
def __call__(self, doc):
|
||||
if not doc.has_annotation("SENT_START"):
|
||||
raise ValueError("No sents")
|
||||
return doc
|
||||
|
||||
def update(self, examples, *, drop=0.0, sgd=None, losses=None):
|
||||
for example in examples:
|
||||
if not example.predicted.has_annotation("SENT_START"):
|
||||
raise ValueError("No sents")
|
||||
return {}
|
||||
|
||||
nlp = English()
|
||||
nlp.add_pipe("sentencizer")
|
||||
nlp.add_pipe("assert_sents")
|
||||
|
||||
# When the pipeline runs, annotations are set
|
||||
doc = nlp("This is a sentence.")
|
||||
|
||||
examples = []
|
||||
for text in ["a a", "b b", "c c"]:
|
||||
examples.append(Example(nlp.make_doc(text), nlp(text)))
|
||||
|
||||
for example in examples:
|
||||
assert not example.predicted.has_annotation("SENT_START")
|
||||
|
||||
# If updating without setting annotations, assert_sents will raise an error
|
||||
with pytest.raises(ValueError):
|
||||
nlp.update(examples)
|
||||
|
||||
# Updating while setting annotations for the sentencizer succeeds
|
||||
nlp.update(examples, annotates=["sentencizer"])
|
||||
|
||||
|
||||
def test_annotating_components_from_config(config_str):
|
||||
@registry.readers("unannotated_corpus")
|
||||
def create_unannotated_corpus() -> Callable[[Language], Iterable[Example]]:
|
||||
return UnannotatedCorpus()
|
||||
|
||||
class UnannotatedCorpus:
|
||||
def __call__(self, nlp: Language) -> Iterator[Example]:
|
||||
for text in ["a a", "b b", "c c"]:
|
||||
doc = nlp.make_doc(text)
|
||||
yield Example(doc, doc)
|
||||
|
||||
orig_config = Config().from_str(config_str)
|
||||
nlp = load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp.config["training"]["annotating_components"] == ["sentencizer"]
|
||||
train(nlp)
|
||||
|
||||
nlp.config["training"]["annotating_components"] = []
|
||||
with pytest.raises(ValueError):
|
||||
train(nlp)
|
|
@ -334,24 +334,31 @@ def test_language_factories_invalid():
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"weights,expected",
|
||||
"weights,override,expected",
|
||||
[
|
||||
([{"a": 1.0}, {"b": 1.0}, {"c": 1.0}], {"a": 0.33, "b": 0.33, "c": 0.33}),
|
||||
([{"a": 1.0}, {"b": 50}, {"c": 123}], {"a": 0.33, "b": 0.33, "c": 0.33}),
|
||||
([{"a": 1.0}, {"b": 1.0}, {"c": 1.0}], {}, {"a": 0.33, "b": 0.33, "c": 0.33}),
|
||||
([{"a": 1.0}, {"b": 50}, {"c": 100}], {}, {"a": 0.01, "b": 0.33, "c": 0.66}),
|
||||
(
|
||||
[{"a": 0.7, "b": 0.3}, {"c": 1.0}, {"d": 0.5, "e": 0.5}],
|
||||
{},
|
||||
{"a": 0.23, "b": 0.1, "c": 0.33, "d": 0.17, "e": 0.17},
|
||||
),
|
||||
(
|
||||
[{"a": 100, "b": 400}, {"c": 0.5, "d": 0.5}],
|
||||
{"a": 0.1, "b": 0.4, "c": 0.25, "d": 0.25},
|
||||
[{"a": 100, "b": 300}, {"c": 50, "d": 50}],
|
||||
{},
|
||||
{"a": 0.2, "b": 0.6, "c": 0.1, "d": 0.1},
|
||||
),
|
||||
([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.25, "b": 0.75}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {"a": 0.0, "b": 0.0, "c": 0.0}),
|
||||
([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {}, {"a": 0.33, "b": 0.67}),
|
||||
([{"a": 0.5, "b": 0.0}], {}, {"a": 1.0, "b": 0.0}),
|
||||
([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.0}, {"a": 0.0, "b": 1.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {}, {"a": 0.0, "b": 0.0, "c": 0.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 1.0}], {}, {"a": 0.0, "b": 0.0, "c": 1.0}),
|
||||
([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {"c": 0.2}, {"a": 0.0, "b": 0.0, "c": 1.0}),
|
||||
([{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}], {"a": 0.0, "b": 0.0}, {"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5}),
|
||||
],
|
||||
)
|
||||
def test_language_factories_combine_score_weights(weights, expected):
|
||||
result = combine_score_weights(weights)
|
||||
def test_language_factories_combine_score_weights(weights, override, expected):
|
||||
result = combine_score_weights(weights, override)
|
||||
assert sum(result.values()) in (0.99, 1.0, 0.0)
|
||||
assert result == expected
|
||||
|
||||
|
@ -377,17 +384,17 @@ def test_language_factories_scores():
|
|||
# Test with custom defaults
|
||||
config = nlp.config.copy()
|
||||
config["training"]["score_weights"]["a1"] = 0.0
|
||||
config["training"]["score_weights"]["b3"] = 1.0
|
||||
config["training"]["score_weights"]["b3"] = 1.3
|
||||
nlp = English.from_config(config)
|
||||
score_weights = nlp.config["training"]["score_weights"]
|
||||
expected = {"a1": 0.0, "a2": 0.5, "b1": 0.03, "b2": 0.12, "b3": 0.34}
|
||||
expected = {"a1": 0.0, "a2": 0.12, "b1": 0.05, "b2": 0.17, "b3": 0.65}
|
||||
assert score_weights == expected
|
||||
# Test with null values
|
||||
config = nlp.config.copy()
|
||||
config["training"]["score_weights"]["a1"] = None
|
||||
nlp = English.from_config(config)
|
||||
score_weights = nlp.config["training"]["score_weights"]
|
||||
expected = {"a1": None, "a2": 0.5, "b1": 0.03, "b2": 0.12, "b3": 0.35}
|
||||
expected = {"a1": None, "a2": 0.12, "b1": 0.05, "b2": 0.17, "b3": 0.66}
|
||||
assert score_weights == expected
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
import pytest
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import TrainablePipe
|
||||
from spacy.training import Example
|
||||
from spacy.util import SimpleFrozenList, get_arg_names
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -417,3 +419,41 @@ def test_pipe_methods_initialize():
|
|||
assert "test" in nlp.config["initialize"]["components"]
|
||||
nlp.remove_pipe("test")
|
||||
assert "test" not in nlp.config["initialize"]["components"]
|
||||
|
||||
|
||||
def test_update_with_annotates():
|
||||
name = "test_with_annotates"
|
||||
results = {}
|
||||
|
||||
def make_component(name):
|
||||
results[name] = ""
|
||||
|
||||
def component(doc):
|
||||
nonlocal results
|
||||
results[name] += doc.text
|
||||
return doc
|
||||
|
||||
return component
|
||||
|
||||
c1 = Language.component(f"{name}1", func=make_component(f"{name}1"))
|
||||
c2 = Language.component(f"{name}2", func=make_component(f"{name}2"))
|
||||
|
||||
components = set([f"{name}1", f"{name}2"])
|
||||
|
||||
nlp = English()
|
||||
texts = ["a", "bb", "ccc"]
|
||||
examples = []
|
||||
for text in texts:
|
||||
examples.append(Example(nlp.make_doc(text), nlp.make_doc(text)))
|
||||
|
||||
for components_to_annotate in [[], [f"{name}1"], [f"{name}1", f"{name}2"], [f"{name}2", f"{name}1"]]:
|
||||
for key in results:
|
||||
results[key] = ""
|
||||
nlp = English(vocab=nlp.vocab)
|
||||
nlp.add_pipe(f"{name}1")
|
||||
nlp.add_pipe(f"{name}2")
|
||||
nlp.update(examples, annotates=components_to_annotate)
|
||||
for component in components_to_annotate:
|
||||
assert results[component] == "".join(eg.predicted.text for eg in examples)
|
||||
for component in components - set(components_to_annotate):
|
||||
assert results[component] == ""
|
||||
|
|
|
@ -14,7 +14,7 @@ cdef class Tokenizer:
|
|||
cdef Pool mem
|
||||
cdef PreshMap _cache
|
||||
cdef PreshMap _specials
|
||||
cpdef readonly Vocab vocab
|
||||
cdef readonly Vocab vocab
|
||||
|
||||
cdef object _token_match
|
||||
cdef object _url_match
|
||||
|
|
|
@ -74,6 +74,8 @@ def train(
|
|||
|
||||
# Components that shouldn't be updated during training
|
||||
frozen_components = T["frozen_components"]
|
||||
# Components that should set annotations on update
|
||||
annotating_components = T["annotating_components"]
|
||||
# Create iterator, which yields out info after each optimization step.
|
||||
training_step_iterator = train_while_improving(
|
||||
nlp,
|
||||
|
@ -86,11 +88,17 @@ def train(
|
|||
max_steps=T["max_steps"],
|
||||
eval_frequency=T["eval_frequency"],
|
||||
exclude=frozen_components,
|
||||
annotating_components=annotating_components,
|
||||
)
|
||||
clean_output_dir(output_path)
|
||||
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
|
||||
if frozen_components:
|
||||
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
||||
if annotating_components:
|
||||
stdout.write(
|
||||
msg.info(f"Set annotations on update for: {annotating_components}")
|
||||
+ "\n"
|
||||
)
|
||||
stdout.write(msg.info(f"Initial learn rate: {optimizer.learn_rate}") + "\n")
|
||||
with nlp.select_pipes(disable=frozen_components):
|
||||
log_step, finalize_logger = train_logger(nlp, stdout, stderr)
|
||||
|
@ -142,6 +150,7 @@ def train_while_improving(
|
|||
patience: int,
|
||||
max_steps: int,
|
||||
exclude: List[str],
|
||||
annotating_components: List[str],
|
||||
):
|
||||
"""Train until an evaluation stops improving. Works as a generator,
|
||||
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
||||
|
@ -193,7 +202,12 @@ def train_while_improving(
|
|||
dropout = next(dropouts)
|
||||
for subbatch in subdivide_batch(batch, accumulate_gradient):
|
||||
nlp.update(
|
||||
subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
|
||||
subbatch,
|
||||
drop=dropout,
|
||||
losses=losses,
|
||||
sgd=False,
|
||||
exclude=exclude,
|
||||
annotates=annotating_components,
|
||||
)
|
||||
# TODO: refactor this so we don't have to run it separately in here
|
||||
for name, proc in nlp.pipeline:
|
||||
|
|
|
@ -1369,32 +1369,14 @@ def combine_score_weights(
|
|||
should be preserved.
|
||||
RETURNS (Dict[str, float]): The combined and normalized weights.
|
||||
"""
|
||||
# We divide each weight by the total weight sum.
|
||||
# We first need to extract all None/null values for score weights that
|
||||
# shouldn't be shown in the table *or* be weighted
|
||||
result = {}
|
||||
all_weights = []
|
||||
for w_dict in weights:
|
||||
filtered_weights = {}
|
||||
for key, value in w_dict.items():
|
||||
value = overrides.get(key, value)
|
||||
if value is None:
|
||||
result[key] = None
|
||||
else:
|
||||
filtered_weights[key] = value
|
||||
all_weights.append(filtered_weights)
|
||||
for w_dict in all_weights:
|
||||
# We need to account for weights that don't sum to 1.0 and normalize
|
||||
# the score weights accordingly, then divide score by the number of
|
||||
# components.
|
||||
total = sum(w_dict.values())
|
||||
for key, value in w_dict.items():
|
||||
if total == 0:
|
||||
weight = 0.0
|
||||
else:
|
||||
weight = round(value / total / len(all_weights), 2)
|
||||
prev_weight = result.get(key, 0.0)
|
||||
prev_weight = 0.0 if prev_weight is None else prev_weight
|
||||
result[key] = prev_weight + weight
|
||||
result = {key: overrides.get(key, value) for w_dict in weights for (key, value) in w_dict.items()}
|
||||
weight_sum = sum([v if v else 0.0 for v in result.values()])
|
||||
for key, value in result.items():
|
||||
if value and weight_sum > 0:
|
||||
result[key] = round(value / weight_sum, 2)
|
||||
return result
|
||||
|
||||
|
||||
|
|
|
@ -25,12 +25,12 @@ cdef struct _Cached:
|
|||
|
||||
cdef class Vocab:
|
||||
cdef Pool mem
|
||||
cpdef readonly StringStore strings
|
||||
cpdef public Morphology morphology
|
||||
cpdef public object vectors
|
||||
cpdef public object _lookups
|
||||
cpdef public object writing_system
|
||||
cpdef public object get_noun_chunks
|
||||
cdef readonly StringStore strings
|
||||
cdef public Morphology morphology
|
||||
cdef public object vectors
|
||||
cdef public object _lookups
|
||||
cdef public object writing_system
|
||||
cdef public object get_noun_chunks
|
||||
cdef readonly int length
|
||||
cdef public object data_dir
|
||||
cdef public object lex_attr_getters
|
||||
|
|
|
@ -182,24 +182,25 @@ single corpus once and then divide it up into `train` and `dev` partitions.
|
|||
This section defines settings and controls for the training and evaluation
|
||||
process that are used when you run [`spacy train`](/api/cli#train).
|
||||
|
||||
| Name | Description |
|
||||
| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ |
|
||||
| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ |
|
||||
| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
|
||||
| `dev_corpus` | Dot notation of the config location defining the dev corpus. Defaults to `corpora.dev`. ~~str~~ |
|
||||
| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ |
|
||||
| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ |
|
||||
| `frozen_components` | Pipeline component names that are "frozen" and shouldn't be initialized or updated during training. See [here](/usage/training#config-components) for details. Defaults to `[]`. ~~List[str]~~ |
|
||||
| `gpu_allocator` | Library for cupy to route GPU memory allocation to. Can be `"pytorch"` or `"tensorflow"`. Defaults to variable `${system.gpu_allocator}`. ~~str~~ |
|
||||
| `logger` | Callable that takes the `nlp` and stdout and stderr `IO` objects, sets up the logger, and returns two new callables to log a training step and to finalize the logger. Defaults to [`ConsoleLogger`](/api/top-level#ConsoleLogger). ~~Callable[[Language, IO, IO], [Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]]]~~ |
|
||||
| `max_epochs` | Maximum number of epochs to train for. `0` means an unlimited number of epochs. `-1` means that the train corpus should be streamed rather than loaded into memory with no shuffling within the training loop. Defaults to `0`. ~~int~~ |
|
||||
| `max_steps` | Maximum number of update steps to train for. `0` means an unlimited number of steps. Defaults to `20000`. ~~int~~ |
|
||||
| `optimizer` | The optimizer. The learning rate schedule and other settings can be configured as part of the optimizer. Defaults to [`Adam`](https://thinc.ai/docs/api-optimizers#adam). ~~Optimizer~~ |
|
||||
| `patience` | How many steps to continue without improvement in evaluation score. `0` disables early stopping. Defaults to `1600`. ~~int~~ |
|
||||
| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ |
|
||||
| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ |
|
||||
| `train_corpus` | Dot notation of the config location defining the train corpus. Defaults to `corpora.train`. ~~str~~ |
|
||||
| Name | Description |
|
||||
| ----------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ |
|
||||
| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ |
|
||||
| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
|
||||
| `dev_corpus` | Dot notation of the config location defining the dev corpus. Defaults to `corpora.dev`. ~~str~~ |
|
||||
| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ |
|
||||
| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ |
|
||||
| `frozen_components` | Pipeline component names that are "frozen" and shouldn't be initialized or updated during training. See [here](/usage/training#config-components) for details. Defaults to `[]`. ~~List[str]~~ |
|
||||
| `annotating_components` | Pipeline component names that should set annotations on the predicted docs during training. See [here](/usage/training#annotating-components) for details. Defaults to `[]`. ~~List[str]~~ |
|
||||
| `gpu_allocator` | Library for cupy to route GPU memory allocation to. Can be `"pytorch"` or `"tensorflow"`. Defaults to variable `${system.gpu_allocator}`. ~~str~~ |
|
||||
| `logger` | Callable that takes the `nlp` and stdout and stderr `IO` objects, sets up the logger, and returns two new callables to log a training step and to finalize the logger. Defaults to [`ConsoleLogger`](/api/top-level#ConsoleLogger). ~~Callable[[Language, IO, IO], [Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]]]~~ |
|
||||
| `max_epochs` | Maximum number of epochs to train for. `0` means an unlimited number of epochs. `-1` means that the train corpus should be streamed rather than loaded into memory with no shuffling within the training loop. Defaults to `0`. ~~int~~ |
|
||||
| `max_steps` | Maximum number of update steps to train for. `0` means an unlimited number of steps. Defaults to `20000`. ~~int~~ |
|
||||
| `optimizer` | The optimizer. The learning rate schedule and other settings can be configured as part of the optimizer. Defaults to [`Adam`](https://thinc.ai/docs/api-optimizers#adam). ~~Optimizer~~ |
|
||||
| `patience` | How many steps to continue without improvement in evaluation score. `0` disables early stopping. Defaults to `1600`. ~~int~~ |
|
||||
| `score_weights` | Score names shown in metrics mapped to their weight towards the final weighted score. See [here](/usage/training#metrics) for details. Defaults to `{}`. ~~Dict[str, float]~~ |
|
||||
| `seed` | The random seed. Defaults to variable `${system.seed}`. ~~int~~ |
|
||||
| `train_corpus` | Dot notation of the config location defining the train corpus. Defaults to `corpora.train`. ~~str~~ |
|
||||
|
||||
### pretraining {#config-pretraining tag="section,optional"}
|
||||
|
||||
|
|
|
@ -245,14 +245,14 @@ and call the optimizer, while the others simply increment the gradients.
|
|||
> losses = trf.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Transformer.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
|
@ -493,6 +493,11 @@ This requires sentence boundaries to be set (e.g. by the
|
|||
depending on the sentence lengths. However, it does provide the transformer with
|
||||
more meaningful windows to attend over.
|
||||
|
||||
To set sentence boundaries with the `sentencizer` during training, add a
|
||||
`sentencizer` to the beginning of the pipeline and include it in
|
||||
[`[training.annotating_components]`](/usage/training#annotating-components) to
|
||||
have it set the sentence boundaries before the `transformer` component runs.
|
||||
|
||||
### strided_spans.v1 {#strided_spans tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
|
|
|
@ -414,11 +414,11 @@ as-is. They are also excluded when calling
|
|||
> #### Note on frozen components
|
||||
>
|
||||
> Even though frozen components are not **updated** during training, they will
|
||||
> still **run** during training and evaluation. This is very important, because
|
||||
> they may still impact your model's performance – for instance, a sentence
|
||||
> boundary detector can impact what the parser or entity recognizer considers a
|
||||
> valid parse. So the evaluation results should always reflect what your
|
||||
> pipeline will produce at runtime.
|
||||
> still **run** during evaluation. This is very important, because they may
|
||||
> still impact your model's performance – for instance, a sentence boundary
|
||||
> detector can impact what the parser or entity recognizer considers a valid
|
||||
> parse. So the evaluation results should always reflect what your pipeline will
|
||||
> produce at runtime.
|
||||
|
||||
```ini
|
||||
[nlp]
|
||||
|
@ -455,6 +455,64 @@ replace_listeners = ["model.tok2vec"]
|
|||
|
||||
</Infobox>
|
||||
|
||||
### Using predictions from preceding components {#annotating-components new="3.1"}
|
||||
|
||||
By default, components are updated in isolation during training, which means
|
||||
that they don't see the predictions of any earlier components in the pipeline. A
|
||||
component receives [`Example.predicted`](/api/example) as input and compares its
|
||||
predictions to [`Example.reference`](/api/example) without saving its
|
||||
annotations in the `predicted` doc.
|
||||
|
||||
Instead, if certain components should **set their annotations** during training,
|
||||
use the setting `annotating_components` in the `[training]` block to specify a
|
||||
list of components. For example, the feature `DEP` from the parser could be used
|
||||
as a tagger feature by including `DEP` in the tok2vec `attrs` and including
|
||||
`parser` in `annotating_components`:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt) {highlight="7,12"}
|
||||
[nlp]
|
||||
pipeline = ["parser", "tagger"]
|
||||
|
||||
[components.tagger.model.tok2vec.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tagger.model.tok2vec.encode.width}
|
||||
attrs = ["NORM","DEP"]
|
||||
rows = [5000,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[training]
|
||||
annotating_components = ["parser"]
|
||||
```
|
||||
|
||||
Any component in the pipeline can be included as an annotating component,
|
||||
including frozen components. Frozen components can set annotations during
|
||||
training just as they would set annotations during evaluation or when the final
|
||||
pipeline is run. The config excerpt below shows how a frozen `ner` component and
|
||||
a `sentencizer` can provide the required `doc.sents` and `doc.ents` for the
|
||||
entity linker during training:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
[nlp]
|
||||
pipeline = ["sentencizer", "ner", "entity_linker"]
|
||||
|
||||
[components.ner]
|
||||
source = "en_core_web_sm"
|
||||
|
||||
[training]
|
||||
frozen_components = ["ner"]
|
||||
annotating_components = ["sentencizer", "ner"]
|
||||
```
|
||||
|
||||
<Infobox variant="warning" title="Training speed with annotating components" id="annotating-components-speed">
|
||||
|
||||
Be aware that non-frozen annotating components with statistical models will
|
||||
**run twice** on each batch, once to update the model and once to apply the
|
||||
now-updated model to the predicted docs.
|
||||
|
||||
</Infobox>
|
||||
|
||||
### Using registered functions {#config-functions}
|
||||
|
||||
The training configuration defined in the config file doesn't have to only
|
||||
|
|
Loading…
Reference in New Issue
Block a user