diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index 1a1e2cb64..858879b9e 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -72,7 +72,7 @@ subword_features = true "textcat", assigns=["doc.cats"], default_config={ - "threshold": 0.0, + "threshold": None, "model": DEFAULT_SINGLE_TEXTCAT_MODEL, "scorer": {"@scorers": "spacy.textcat_scorer.v1"}, }, @@ -94,7 +94,7 @@ def make_textcat( nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], - threshold: float, + threshold: Optional[float], scorer: Optional[Callable], ) -> "TextCategorizer": """Create a TextCategorizer component. The text categorizer predicts categories @@ -135,7 +135,7 @@ class TextCategorizer(TrainablePipe): model: Model, name: str = "textcat", *, - threshold: float, + threshold: Optional[float], scorer: Optional[Callable] = textcat_score, ) -> None: """Initialize a text categorizer for single-label classification. @@ -144,7 +144,8 @@ class TextCategorizer(TrainablePipe): model (thinc.api.Model): The Thinc Model powering the pipeline component. name (str): The component instance name, used to add entries to the losses during training. - threshold (float): Cutoff to consider a prediction "positive". + threshold (Optional[float]): Unused, not needed for single-label + (exclusive classes) classification. scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_cats for the attribute "cats". diff --git a/website/docs/api/textcategorizer.md b/website/docs/api/textcategorizer.md index 042b4ab76..f5f8706ec 100644 --- a/website/docs/api/textcategorizer.md +++ b/website/docs/api/textcategorizer.md @@ -63,7 +63,6 @@ architectures and their arguments and hyperparameters. > ```python > from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL > config = { -> "threshold": 0.5, > "model": DEFAULT_SINGLE_TEXTCAT_MODEL, > } > nlp.add_pipe("textcat", config=config) @@ -82,7 +81,7 @@ architectures and their arguments and hyperparameters. | Setting | Description | | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | +| `threshold` | Cutoff to consider a prediction "positive", relevant for `textcat_multilabel` when calculating accuracy scores. ~~float~~ | | `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ | | `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | @@ -123,7 +122,7 @@ shortcut for this and instantiate the component using its string name and | `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | _keyword-only_ | | -| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ | +| `threshold` | Cutoff to consider a prediction "positive", relevant for `textcat_multilabel` when calculating accuracy scores. ~~float~~ | | `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ | ## TextCategorizer.\_\_call\_\_ {#call tag="method"}