mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Few more Example unit tests (#5720)
* small fixes in Example, UX * add gold tests for aligned_spans and get_aligned_parse * sentencizer unnecessary
This commit is contained in:
parent
433dc3c9c9
commit
a39a110c4e
|
@ -477,15 +477,14 @@ class Errors(object):
|
|||
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E969 = ("Expected string values for field '{field}', but received {types} instead. ")
|
||||
E970 = ("Can not execute command '{str_command}'. Do you have '{tool}' installed?")
|
||||
E971 = ("Found incompatible lengths in Doc.from_array: {array_length} for the "
|
||||
"array and {doc_length} for the Doc itself.")
|
||||
E972 = ("Example.__init__ got None for '{arg}'. Requires Doc.")
|
||||
E973 = ("Unexpected type for NER data")
|
||||
E974 = ("Unknown {obj} attribute: {key}")
|
||||
E975 = ("The method 'Example.from_dict' expects a Doc as first argument, "
|
||||
"but got {type}")
|
||||
E976 = ("The method 'Example.from_dict' expects a dict as second argument, "
|
||||
E976 = ("The method 'Example.from_dict' expects a {type} as {n} argument, "
|
||||
"but received None.")
|
||||
E977 = ("Can not compare a MorphAnalysis with a string object. "
|
||||
"This is likely a bug in spaCy, so feel free to open an issue.")
|
||||
|
|
|
@ -28,7 +28,6 @@ cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
|
|||
|
||||
cdef class Example:
|
||||
def __init__(self, Doc predicted, Doc reference, *, alignment=None):
|
||||
""" Doc can either be text, or an actual Doc """
|
||||
if predicted is None:
|
||||
raise TypeError(Errors.E972.format(arg="predicted"))
|
||||
if reference is None:
|
||||
|
@ -59,17 +58,15 @@ cdef class Example:
|
|||
|
||||
@classmethod
|
||||
def from_dict(cls, Doc predicted, dict example_dict):
|
||||
if predicted is None:
|
||||
raise ValueError(Errors.E976.format(n="first", type="Doc"))
|
||||
if example_dict is None:
|
||||
raise ValueError(Errors.E976)
|
||||
if not isinstance(predicted, Doc):
|
||||
raise TypeError(Errors.E975.format(type=type(predicted)))
|
||||
raise ValueError(Errors.E976.format(n="second", type="dict"))
|
||||
example_dict = _fix_legacy_dict_data(example_dict)
|
||||
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
|
||||
if "ORTH" not in tok_dict:
|
||||
tok_dict["ORTH"] = [tok.text for tok in predicted]
|
||||
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
|
||||
if not _has_field(tok_dict, "SPACY"):
|
||||
spaces = _guess_spaces(predicted.text, tok_dict["ORTH"])
|
||||
return Example(
|
||||
predicted,
|
||||
annotations2doc(predicted.vocab, tok_dict, doc_dict)
|
||||
|
@ -257,7 +254,11 @@ def _annot2array(vocab, tok_annot, doc_annot):
|
|||
values.append([vocab.morphology.add(v) for v in value])
|
||||
else:
|
||||
attrs.append(key)
|
||||
try:
|
||||
values.append([vocab.strings.add(v) for v in value])
|
||||
except TypeError:
|
||||
types= set([type(v) for v in value])
|
||||
raise TypeError(Errors.E969.format(field=key, types=types))
|
||||
|
||||
array = numpy.asarray(values, dtype="uint64")
|
||||
return attrs, array.T
|
||||
|
|
|
@ -45,7 +45,7 @@ def test_parser_ancestors(tree, cyclic_tree, partial_tree, multirooted_tree):
|
|||
|
||||
def test_parser_contains_cycle(tree, cyclic_tree, partial_tree, multirooted_tree):
|
||||
assert contains_cycle(tree) is None
|
||||
assert contains_cycle(cyclic_tree) == set([3, 4, 5])
|
||||
assert contains_cycle(cyclic_tree) == {3, 4, 5}
|
||||
assert contains_cycle(partial_tree) is None
|
||||
assert contains_cycle(multirooted_tree) is None
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ from spacy.gold import Corpus, docs_to_json
|
|||
from spacy.gold.example import Example
|
||||
from spacy.gold.converters import json2docs
|
||||
from spacy.lang.en import English
|
||||
from spacy.pipeline import EntityRuler
|
||||
from spacy.tokens import Doc, DocBin
|
||||
from spacy.util import get_words_and_spaces, minibatch
|
||||
from thinc.api import compounding
|
||||
|
@ -272,72 +273,72 @@ def test_split_sentences(en_vocab):
|
|||
|
||||
|
||||
def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
|
||||
words = ["Mr. and ", "Mrs. Smith", "flew to", "San Francisco Valley", "."]
|
||||
words = ["Mr and ", "Mrs Smith", "flew to", "San Francisco Valley", "."]
|
||||
spaces = [True, True, True, False, False]
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
prefix = "Mr. and Mrs. Smith flew to "
|
||||
prefix = "Mr and Mrs Smith flew to "
|
||||
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
|
||||
gold_words = ["Mr. and Mrs. Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
gold_words = ["Mr and Mrs Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
|
||||
|
||||
entities = [
|
||||
(len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
|
||||
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
gold_words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
|
||||
|
||||
entities = [
|
||||
(len("Mr. and "), len("Mr. and Mrs."), "PERSON"), # "Mrs." is a Person
|
||||
(len("Mr and "), len("Mr and Mrs"), "PERSON"), # "Mrs" is a Person
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
gold_words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
gold_words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", None, "O", "U-LOC", "O"]
|
||||
|
||||
|
||||
def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
|
||||
words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
words = ["Mr and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
spaces = [True, True, True, True, True, True, True, False, False]
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
prefix = "Mr. and Mrs. Smith flew to "
|
||||
prefix = "Mr and Mrs Smith flew to "
|
||||
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
|
||||
gold_words = ["Mr. and Mrs. Smith", "flew to", "San Francisco Valley", "."]
|
||||
gold_words = ["Mr and Mrs Smith", "flew to", "San Francisco Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
|
||||
|
||||
entities = [
|
||||
(len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
|
||||
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
gold_words = ["Mr. and", "Mrs. Smith", "flew to", "San Francisco Valley", "."]
|
||||
gold_words = ["Mr and", "Mrs Smith", "flew to", "San Francisco Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
|
||||
|
||||
|
||||
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
|
||||
words = ["Mr. and Mrs.", "Smith", "flew", "to", "San Francisco", "Valley", "."]
|
||||
words = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley", "."]
|
||||
spaces = [True, True, True, True, True, False, False]
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
prefix = "Mr. and Mrs. Smith flew to "
|
||||
prefix = "Mr and Mrs Smith flew to "
|
||||
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
|
||||
gold_words = ["Mr.", "and Mrs. Smith", "flew to", "San", "Francisco Valley", "."]
|
||||
gold_words = ["Mr", "and Mrs Smith", "flew to", "San", "Francisco Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
|
||||
|
||||
entities = [
|
||||
(len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
|
||||
(len("Mr and "), len("Mr and Mrs Smith"), "PERSON"), # "Mrs Smith" is a PERSON
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
gold_words = ["Mr. and", "Mrs. Smith", "flew to", "San", "Francisco Valley", "."]
|
||||
gold_words = ["Mr and", "Mrs Smith", "flew to", "San", "Francisco Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
ner_tags = example.get_aligned_ner()
|
||||
assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
|
||||
|
@ -407,6 +408,49 @@ def test_biluo_spans(en_tokenizer):
|
|||
assert spans[1].label_ == "GPE"
|
||||
|
||||
|
||||
def test_aligned_spans_y2x(en_vocab, en_tokenizer):
|
||||
words = ["Mr and Mrs Smith", "flew", "to", "San Francisco Valley", "."]
|
||||
spaces = [True, True, True, False, False]
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
prefix = "Mr and Mrs Smith flew to "
|
||||
entities = [
|
||||
(0, len("Mr and Mrs Smith"), "PERSON"),
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
|
||||
ents_ref = example.reference.ents
|
||||
assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4), (6, 9)]
|
||||
ents_y2x = example.get_aligned_spans_y2x(ents_ref)
|
||||
assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1), (3, 4)]
|
||||
|
||||
|
||||
def test_aligned_spans_x2y(en_vocab, en_tokenizer):
|
||||
text = "Mr and Mrs Smith flew to San Francisco Valley"
|
||||
nlp = English()
|
||||
ruler = EntityRuler(nlp)
|
||||
patterns = [{"label": "PERSON", "pattern": "Mr and Mrs Smith"},
|
||||
{"label": "LOC", "pattern": "San Francisco Valley"}]
|
||||
ruler.add_patterns(patterns)
|
||||
nlp.add_pipe(ruler)
|
||||
doc = nlp(text)
|
||||
assert [(ent.start, ent.end) for ent in doc.ents] == [(0, 4), (6, 9)]
|
||||
prefix = "Mr and Mrs Smith flew to "
|
||||
entities = [
|
||||
(0, len("Mr and Mrs Smith"), "PERSON"),
|
||||
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
|
||||
]
|
||||
tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "San Francisco", "Valley"]
|
||||
example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
|
||||
assert [(ent.start, ent.end) for ent in example.reference.ents] == [(0, 2), (4, 6)]
|
||||
|
||||
# Ensure that 'get_aligned_spans_x2y' has the aligned entities correct
|
||||
ents_pred = example.predicted.ents
|
||||
assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4), (6, 9)]
|
||||
ents_x2y = example.get_aligned_spans_x2y(ents_pred)
|
||||
assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2), (4, 6)]
|
||||
|
||||
|
||||
def test_gold_ner_missing_tags(en_tokenizer):
|
||||
doc = en_tokenizer("I flew to Silicon Valley via London.")
|
||||
biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
|
||||
|
@ -414,6 +458,16 @@ def test_gold_ner_missing_tags(en_tokenizer):
|
|||
assert example.get_aligned("ENT_IOB") == [0, 2, 2, 3, 1, 2, 3, 2]
|
||||
|
||||
|
||||
def test_projectivize(en_tokenizer):
|
||||
doc = en_tokenizer("He pretty quickly walks away")
|
||||
heads = [3, 2, 3, 0, 2]
|
||||
example = Example.from_dict(doc, {"heads": heads})
|
||||
proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
|
||||
nonproj_heads, nonproj_labels = example.get_aligned_parse(projectivize=False)
|
||||
assert proj_heads == [3, 2, 3, 0, 3]
|
||||
assert nonproj_heads == [3, 2, 3, 0, 2]
|
||||
|
||||
|
||||
def test_iob_to_biluo():
|
||||
good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
|
||||
good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
|
||||
|
|
Loading…
Reference in New Issue
Block a user