mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Support no hidden layer in parser and NER (#4672)
* Support no hidden layers for parser * Fix parser model for depth 1 * Fix parser for hidden depth=0 * Add option of non-blocking to CUDA stream
This commit is contained in:
parent
4b123952aa
commit
a3c43a1692
|
@ -42,11 +42,17 @@ cdef WeightsC get_c_weights(model) except *:
|
|||
cdef precompute_hiddens state2vec = model.state2vec
|
||||
output.feat_weights = state2vec.get_feat_weights()
|
||||
output.feat_bias = <const float*>state2vec.bias.data
|
||||
cdef np.ndarray vec2scores_W = model.vec2scores.W
|
||||
cdef np.ndarray vec2scores_b = model.vec2scores.b
|
||||
cdef np.ndarray vec2scores_W
|
||||
cdef np.ndarray vec2scores_b
|
||||
if model.vec2scores is None:
|
||||
output.hidden_weights = NULL
|
||||
output.hidden_bias = NULL
|
||||
else:
|
||||
vec2scores_W = model.vec2scores.W
|
||||
vec2scores_b = model.vec2scores.b
|
||||
output.hidden_weights = <const float*>vec2scores_W.data
|
||||
output.hidden_bias = <const float*>vec2scores_b.data
|
||||
cdef np.ndarray class_mask = model._class_mask
|
||||
output.hidden_weights = <const float*>vec2scores_W.data
|
||||
output.hidden_bias = <const float*>vec2scores_b.data
|
||||
output.seen_classes = <const float*>class_mask.data
|
||||
return output
|
||||
|
||||
|
@ -54,7 +60,10 @@ cdef WeightsC get_c_weights(model) except *:
|
|||
cdef SizesC get_c_sizes(model, int batch_size) except *:
|
||||
cdef SizesC output
|
||||
output.states = batch_size
|
||||
output.classes = model.vec2scores.nO
|
||||
if model.vec2scores is None:
|
||||
output.classes = model.state2vec.nO
|
||||
else:
|
||||
output.classes = model.vec2scores.nO
|
||||
output.hiddens = model.state2vec.nO
|
||||
output.pieces = model.state2vec.nP
|
||||
output.feats = model.state2vec.nF
|
||||
|
@ -105,11 +114,12 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
|
||||
cdef void predict_states(ActivationsC* A, StateC** states,
|
||||
const WeightsC* W, SizesC n) nogil:
|
||||
cdef double one = 1.0
|
||||
resize_activations(A, n)
|
||||
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
||||
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
|
||||
for i in range(n.states):
|
||||
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
||||
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
||||
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
|
||||
sum_state_features(A.unmaxed,
|
||||
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
|
||||
for i in range(n.states):
|
||||
|
@ -120,18 +130,20 @@ cdef void predict_states(ActivationsC* A, StateC** states,
|
|||
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
|
||||
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
||||
memset(A.scores, 0, n.states * n.classes * sizeof(float))
|
||||
cdef double one = 1.0
|
||||
# Compute hidden-to-output
|
||||
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
|
||||
n.states, n.classes, n.hiddens, one,
|
||||
<float*>A.hiddens, n.hiddens, 1,
|
||||
<float*>W.hidden_weights, n.hiddens, 1,
|
||||
one,
|
||||
<float*>A.scores, n.classes, 1)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
VecVec.add_i(&A.scores[i*n.classes],
|
||||
W.hidden_bias, 1., n.classes)
|
||||
if W.hidden_weights == NULL:
|
||||
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
|
||||
else:
|
||||
# Compute hidden-to-output
|
||||
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
|
||||
n.states, n.classes, n.hiddens, one,
|
||||
<float*>A.hiddens, n.hiddens, 1,
|
||||
<float*>W.hidden_weights, n.hiddens, 1,
|
||||
one,
|
||||
<float*>A.scores, n.classes, 1)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
VecVec.add_i(&A.scores[i*n.classes],
|
||||
W.hidden_bias, 1., n.classes)
|
||||
# Set unseen classes to minimum value
|
||||
i = 0
|
||||
min_ = A.scores[0]
|
||||
|
@ -219,7 +231,9 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
|
|||
class ParserModel(Model):
|
||||
def __init__(self, tok2vec, lower_model, upper_model, unseen_classes=None):
|
||||
Model.__init__(self)
|
||||
self._layers = [tok2vec, lower_model, upper_model]
|
||||
self._layers = [tok2vec, lower_model]
|
||||
if upper_model is not None:
|
||||
self._layers.append(upper_model)
|
||||
self.unseen_classes = set()
|
||||
if unseen_classes:
|
||||
for class_ in unseen_classes:
|
||||
|
@ -234,6 +248,8 @@ class ParserModel(Model):
|
|||
return step_model, finish_parser_update
|
||||
|
||||
def resize_output(self, new_output):
|
||||
if len(self._layers) == 2:
|
||||
return
|
||||
if new_output == self.upper.nO:
|
||||
return
|
||||
smaller = self.upper
|
||||
|
@ -275,12 +291,24 @@ class ParserModel(Model):
|
|||
class ParserStepModel(Model):
|
||||
def __init__(self, docs, layers, unseen_classes=None, drop=0.):
|
||||
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
|
||||
if layers[1].nP >= 2:
|
||||
activation = "maxout"
|
||||
elif len(layers) == 2:
|
||||
activation = None
|
||||
else:
|
||||
activation = "relu"
|
||||
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
|
||||
drop=drop)
|
||||
self.vec2scores = layers[-1]
|
||||
self.cuda_stream = util.get_cuda_stream()
|
||||
activation=activation, drop=drop)
|
||||
if len(layers) == 3:
|
||||
self.vec2scores = layers[-1]
|
||||
else:
|
||||
self.vec2scores = None
|
||||
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
|
||||
self.backprops = []
|
||||
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
|
||||
if self.vec2scores is None:
|
||||
self._class_mask = numpy.zeros((self.state2vec.nO,), dtype='f')
|
||||
else:
|
||||
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
|
||||
self._class_mask.fill(1)
|
||||
if unseen_classes is not None:
|
||||
for class_ in unseen_classes:
|
||||
|
@ -302,10 +330,15 @@ class ParserStepModel(Model):
|
|||
def begin_update(self, states, drop=0.):
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
||||
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
if mask is not None:
|
||||
vector *= mask
|
||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||
if self.vec2scores is not None:
|
||||
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
if mask is not None:
|
||||
vector *= mask
|
||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||
else:
|
||||
scores = NumpyOps().asarray(vector)
|
||||
get_d_vector = lambda d_scores, sgd=None: d_scores
|
||||
mask = None
|
||||
# If the class is unseen, make sure its score is minimum
|
||||
scores[:, self._class_mask == 0] = numpy.nanmin(scores)
|
||||
|
||||
|
@ -342,12 +375,12 @@ class ParserStepModel(Model):
|
|||
return ids
|
||||
|
||||
def make_updates(self, sgd):
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if self.cuda_stream is not None:
|
||||
self.cuda_stream.synchronize()
|
||||
# Add a padding vector to the d_tokvecs gradient, so that missing
|
||||
# values don't affect the real gradient.
|
||||
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if self.cuda_stream is not None:
|
||||
self.cuda_stream.synchronize()
|
||||
for ids, d_vector, bp_vector in self.backprops:
|
||||
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
|
||||
ids = ids.flatten()
|
||||
|
@ -385,9 +418,10 @@ cdef class precompute_hiddens:
|
|||
cdef np.ndarray bias
|
||||
cdef object _cuda_stream
|
||||
cdef object _bp_hiddens
|
||||
cdef object activation
|
||||
|
||||
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
drop=0.):
|
||||
activation="maxout", drop=0.):
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
|
@ -405,6 +439,8 @@ cdef class precompute_hiddens:
|
|||
self.nP = getattr(lower_model, 'nP', 1)
|
||||
self.nO = cached.shape[2]
|
||||
self.ops = lower_model.ops
|
||||
assert activation in (None, "relu", "maxout")
|
||||
self.activation = activation
|
||||
self._is_synchronized = False
|
||||
self._cuda_stream = cuda_stream
|
||||
self._cached = cached
|
||||
|
@ -417,7 +453,7 @@ cdef class precompute_hiddens:
|
|||
return <float*>self._cached.data
|
||||
|
||||
def __call__(self, X):
|
||||
return self.begin_update(X)[0]
|
||||
return self.begin_update(X, drop=None)[0]
|
||||
|
||||
def begin_update(self, token_ids, drop=0.):
|
||||
cdef np.ndarray state_vector = numpy.zeros(
|
||||
|
@ -450,28 +486,35 @@ cdef class precompute_hiddens:
|
|||
else:
|
||||
ops = CupyOps()
|
||||
|
||||
if self.nP == 1:
|
||||
state_vector = state_vector.reshape(state_vector.shape[:-1])
|
||||
mask = state_vector >= 0.
|
||||
state_vector *= mask
|
||||
else:
|
||||
if self.activation == "maxout":
|
||||
state_vector, mask = ops.maxout(state_vector)
|
||||
else:
|
||||
state_vector = state_vector.reshape(state_vector.shape[:-1])
|
||||
if self.activation == "relu":
|
||||
mask = state_vector >= 0.
|
||||
state_vector *= mask
|
||||
else:
|
||||
mask = None
|
||||
|
||||
def backprop_nonlinearity(d_best, sgd=None):
|
||||
if isinstance(d_best, numpy.ndarray):
|
||||
ops = NumpyOps()
|
||||
else:
|
||||
ops = CupyOps()
|
||||
mask_ = ops.asarray(mask)
|
||||
|
||||
if mask is not None:
|
||||
mask_ = ops.asarray(mask)
|
||||
# This will usually be on GPU
|
||||
d_best = ops.asarray(d_best)
|
||||
# Fix nans (which can occur from unseen classes.)
|
||||
d_best[ops.xp.isnan(d_best)] = 0.
|
||||
if self.nP == 1:
|
||||
if self.activation == "maxout":
|
||||
mask_ = ops.asarray(mask)
|
||||
return ops.backprop_maxout(d_best, mask_, self.nP)
|
||||
elif self.activation == "relu":
|
||||
mask_ = ops.asarray(mask)
|
||||
d_best *= mask_
|
||||
d_best = d_best.reshape((d_best.shape + (1,)))
|
||||
return d_best
|
||||
else:
|
||||
return ops.backprop_maxout(d_best, mask_, self.nP)
|
||||
return d_best.reshape((d_best.shape + (1,)))
|
||||
return state_vector, backprop_nonlinearity
|
||||
|
|
|
@ -22,7 +22,7 @@ from thinc.extra.search cimport Beam
|
|||
from thinc.api import chain, clone
|
||||
from thinc.v2v import Model, Maxout, Affine
|
||||
from thinc.misc import LayerNorm
|
||||
from thinc.neural.ops import CupyOps
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
import srsly
|
||||
|
@ -62,13 +62,16 @@ cdef class Parser:
|
|||
bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0))
|
||||
self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0))
|
||||
nr_feature_tokens = cfg.get("nr_feature_tokens", cls.nr_feature)
|
||||
if depth != 1:
|
||||
if depth not in (0, 1):
|
||||
raise ValueError(TempErrors.T004.format(value=depth))
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
|
||||
cfg.get('maxout_pieces', 2))
|
||||
token_vector_width = util.env_opt('token_vector_width',
|
||||
cfg.get('token_vector_width', 96))
|
||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
|
||||
if depth == 0:
|
||||
hidden_width = nr_class
|
||||
parser_maxout_pieces = 1
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
|
||||
pretrained_vectors = cfg.get('pretrained_vectors', None)
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
|
@ -84,10 +87,12 @@ cdef class Parser:
|
|||
nF=nr_feature_tokens, nI=token_vector_width,
|
||||
nP=parser_maxout_pieces)
|
||||
lower.nP = parser_maxout_pieces
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
|
||||
upper.W *= 0
|
||||
if depth == 1:
|
||||
with Model.use_device('cpu'):
|
||||
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
|
||||
upper.W *= 0
|
||||
else:
|
||||
upper = None
|
||||
|
||||
cfg = {
|
||||
'nr_class': nr_class,
|
||||
|
|
|
@ -301,13 +301,13 @@ def get_component_name(component):
|
|||
return repr(component)
|
||||
|
||||
|
||||
def get_cuda_stream(require=False):
|
||||
def get_cuda_stream(require=False, non_blocking=True):
|
||||
if CudaStream is None:
|
||||
return None
|
||||
elif isinstance(Model.ops, NumpyOps):
|
||||
return None
|
||||
else:
|
||||
return CudaStream()
|
||||
return CudaStream(non_blocking=non_blocking)
|
||||
|
||||
|
||||
def get_async(stream, numpy_array):
|
||||
|
|
Loading…
Reference in New Issue
Block a user