Update adding languages docs

This commit is contained in:
ines 2017-05-23 23:16:44 +02:00
parent 3523715d52
commit a433e5012a

View File

@ -436,6 +436,8 @@ p
+h(3, "morph-rules") Morph rules +h(3, "morph-rules") Morph rules
//- TODO: write morph rules section
+h(2, "testing") Testing the new language tokenizer +h(2, "testing") Testing the new language tokenizer
p p
@ -626,37 +628,20 @@ p
| trains the model using #[+a("https://radimrehurek.com/gensim/") Gensim]. | trains the model using #[+a("https://radimrehurek.com/gensim/") Gensim].
| The #[code vectors.bin] file should consist of one word and vector per line. | The #[code vectors.bin] file should consist of one word and vector per line.
+h(2, "model-directory") Setting up a model directory
p
| Once you've collected the word frequencies, Brown clusters and word
| vectors files, you can use the
| #[+a("/docs/usage/cli#model") #[code model] command] to create a data
| directory:
+code(false, "bash").
python -m spacy model [lang] [model_dir] [freqs_data] [clusters_data] [vectors_data]
+aside-code("your_data_directory", "yaml"). +aside-code("your_data_directory", "yaml").
├── vocab/ ├── vocab/
| ├── lexemes.bin # via nlp.vocab.dump(path) | ├── lexemes.bin
| ├── strings.json # via nlp.vocab.strings.dump(file_) | ├── strings.json
| └── oov_prob # optional | └── oov_prob
├── pos/ # optional ├── pos/
| ├── model # via nlp.tagger.model.dump(path) | ├── model
| └── config.json # via Langage.train | └── config.json
├── deps/ # optional ├── deps/
| ├── model # via nlp.parser.model.dump(path) | ├── model
| └── config.json # via Langage.train | └── config.json
└── ner/ # optional └── ner/
├── model # via nlp.entity.model.dump(path) ├── model
└── config.json # via Langage.train └── config.json
p
| This creates a spaCy data directory with a vocabulary model, ready to be
| loaded. By default, the command expects to be able to find your language
| class using #[code spacy.util.get_lang_class(lang_id)].
+h(2, "train-tagger-parser") Training the tagger and parser +h(2, "train-tagger-parser") Training the tagger and parser