mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-29 23:17:59 +03:00 
			
		
		
		
	Add experimental coref docs (#11291)
* Add experimental coref docs * Docs cleanup * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Apply changes from code review * Fix prettier formatting It seems a period after a number made this think it was a list? * Update docs on examples for initialize * Add docs for coref scorers * Remove 3.4 notes from coref There won't be a "new" tag until it's in core. * Add docs for span cleaner * Fix docs * Fix docs to match spacy-experimental These weren't properly updated when the code was moved out of spacy core. * More doc fixes * Formatting * Update architectures * Fix links * Fix another link Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <svlandeg@github.com>
This commit is contained in:
		
							parent
							
								
									877671e09a
								
							
						
					
					
						commit
						a44b7d4622
					
				|  | @ -11,6 +11,7 @@ menu: | ||||||
|   - ['Text Classification', 'textcat'] |   - ['Text Classification', 'textcat'] | ||||||
|   - ['Span Classification', 'spancat'] |   - ['Span Classification', 'spancat'] | ||||||
|   - ['Entity Linking', 'entitylinker'] |   - ['Entity Linking', 'entitylinker'] | ||||||
|  |   - ['Coreference', 'coref-architectures'] | ||||||
| --- | --- | ||||||
| 
 | 
 | ||||||
| A **model architecture** is a function that wires up a | A **model architecture** is a function that wires up a | ||||||
|  | @ -587,8 +588,8 @@ consists of either two or three subnetworks: | ||||||
|   run once for each batch. |   run once for each batch. | ||||||
| - **lower**: Construct a feature-specific vector for each `(token, feature)` | - **lower**: Construct a feature-specific vector for each `(token, feature)` | ||||||
|   pair. This is also run once for each batch. Constructing the state |   pair. This is also run once for each batch. Constructing the state | ||||||
|   representation is then a matter of summing the component features and |   representation is then a matter of summing the component features and applying | ||||||
|   applying the non-linearity. |   the non-linearity. | ||||||
| - **upper** (optional): A feed-forward network that predicts scores from the | - **upper** (optional): A feed-forward network that predicts scores from the | ||||||
|   state representation. If not present, the output from the lower model is used |   state representation. If not present, the output from the lower model is used | ||||||
|   as action scores directly. |   as action scores directly. | ||||||
|  | @ -628,8 +629,8 @@ same signature, but the `use_upper` argument was `True` by default. | ||||||
| > ``` | > ``` | ||||||
| 
 | 
 | ||||||
| Build a tagger model, using a provided token-to-vector component. The tagger | Build a tagger model, using a provided token-to-vector component. The tagger | ||||||
| model adds a linear layer with softmax activation to predict scores given | model adds a linear layer with softmax activation to predict scores given the | ||||||
| the token vectors. | token vectors. | ||||||
| 
 | 
 | ||||||
| | Name        | Description                                                                                | | | Name        | Description                                                                                | | ||||||
| | ----------- | ------------------------------------------------------------------------------------------ | | | ----------- | ------------------------------------------------------------------------------------------ | | ||||||
|  | @ -920,5 +921,84 @@ A function that reads an existing `KnowledgeBase` from file. | ||||||
| A function that takes as input a [`KnowledgeBase`](/api/kb) and a | A function that takes as input a [`KnowledgeBase`](/api/kb) and a | ||||||
| [`Span`](/api/span) object denoting a named entity, and returns a list of | [`Span`](/api/span) object denoting a named entity, and returns a list of | ||||||
| plausible [`Candidate`](/api/kb/#candidate) objects. The default | plausible [`Candidate`](/api/kb/#candidate) objects. The default | ||||||
| `CandidateGenerator` uses the text of a mention to find its potential | `CandidateGenerator` uses the text of a mention to find its potential aliases in | ||||||
| aliases in the `KnowledgeBase`. Note that this function is case-dependent. | the `KnowledgeBase`. Note that this function is case-dependent. | ||||||
|  | 
 | ||||||
|  | ## Coreference {#coref-architectures tag="experimental"} | ||||||
|  | 
 | ||||||
|  | A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to | ||||||
|  | the same entity. A [`SpanResolver`](/api/span-resolver) component infers spans | ||||||
|  | from single tokens. Together these components can be used to reproduce | ||||||
|  | traditional coreference models. You can also omit the `SpanResolver` if working | ||||||
|  | with only token-level clusters is acceptable. | ||||||
|  | 
 | ||||||
|  | ### spacy-experimental.Coref.v1 {#Coref tag="experimental"} | ||||||
|  | 
 | ||||||
|  | > #### Example Config | ||||||
|  | > | ||||||
|  | > ```ini | ||||||
|  | > | ||||||
|  | > [model] | ||||||
|  | > @architectures = "spacy-experimental.Coref.v1" | ||||||
|  | > distance_embedding_size = 20 | ||||||
|  | > dropout = 0.3 | ||||||
|  | > hidden_size = 1024 | ||||||
|  | > depth = 2 | ||||||
|  | > antecedent_limit = 50 | ||||||
|  | > antecedent_batch_size = 512 | ||||||
|  | > | ||||||
|  | > [model.tok2vec] | ||||||
|  | > @architectures = "spacy-transformers.TransformerListener.v1" | ||||||
|  | > grad_factor = 1.0 | ||||||
|  | > upstream = "transformer" | ||||||
|  | > pooling = {"@layers":"reduce_mean.v1"} | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | The `Coref` model architecture is a Thinc `Model`. | ||||||
|  | 
 | ||||||
|  | | Name                      | Description                                                                                                                                                                              | | ||||||
|  | | ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `tok2vec`                 | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~                                                                                                                                  | | ||||||
|  | | `distance_embedding_size` | A representation of the distance between candidates. ~~int~~                                                                                                                             | | ||||||
|  | | `dropout`                 | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~                                                            | | ||||||
|  | | `hidden_size`             | Size of the main internal layers. ~~int~~                                                                                                                                                | | ||||||
|  | | `depth`                   | Depth of the internal network. ~~int~~                                                                                                                                                   | | ||||||
|  | | `antecedent_limit`        | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ | | ||||||
|  | | `antecedent_batch_size`   | Internal batch size. ~~int~~                                                                                                                                                             | | ||||||
|  | | **CREATES**               | The model using the architecture. ~~Model[List[Doc], Floats2d]~~                                                                                                                         | | ||||||
|  | 
 | ||||||
|  | ### spacy-experimental.SpanResolver.v1 {#SpanResolver tag="experimental"} | ||||||
|  | 
 | ||||||
|  | > #### Example Config | ||||||
|  | > | ||||||
|  | > ```ini | ||||||
|  | > | ||||||
|  | > [model] | ||||||
|  | > @architectures = "spacy-experimental.SpanResolver.v1" | ||||||
|  | > hidden_size = 1024 | ||||||
|  | > distance_embedding_size = 64 | ||||||
|  | > conv_channels = 4 | ||||||
|  | > window_size = 1 | ||||||
|  | > max_distance = 128 | ||||||
|  | > prefix = "coref_head_clusters" | ||||||
|  | > | ||||||
|  | > [model.tok2vec] | ||||||
|  | > @architectures = "spacy-transformers.TransformerListener.v1" | ||||||
|  | > grad_factor = 1.0 | ||||||
|  | > upstream = "transformer" | ||||||
|  | > pooling = {"@layers":"reduce_mean.v1"} | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | The `SpanResolver` model architecture is a Thinc `Model`. Note that | ||||||
|  | `MentionClusters` is `List[List[Tuple[int, int]]]`. | ||||||
|  | 
 | ||||||
|  | | Name                      | Description                                                                                                          | | ||||||
|  | | ------------------------- | -------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `tok2vec`                 | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~                                                              | | ||||||
|  | | `hidden_size`             | Size of the main internal layers. ~~int~~                                                                            | | ||||||
|  | | `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~                                                     | | ||||||
|  | | `conv_channels`           | The number of channels in the internal CNN. ~~int~~                                                                  | | ||||||
|  | | `window_size`             | The number of neighboring tokens to consider in the internal CNN. `1` means consider one token on each side. ~~int~~ | | ||||||
|  | | `max_distance`            | The longest possible length of a predicted span. ~~int~~                                                             | | ||||||
|  | | `prefix`                  | The prefix that indicates spans to use for input data. ~~string~~                                                    | | ||||||
|  | | **CREATES**               | The model using the architecture. ~~Model[List[Doc], List[MentionClusters]]~~                                        | | ||||||
|  |  | ||||||
							
								
								
									
										353
									
								
								website/docs/api/coref.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										353
									
								
								website/docs/api/coref.md
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,353 @@ | ||||||
|  | --- | ||||||
|  | title: CoreferenceResolver | ||||||
|  | tag: class,experimental | ||||||
|  | source: spacy-experimental/coref/coref_component.py | ||||||
|  | teaser: 'Pipeline component for word-level coreference resolution' | ||||||
|  | api_base_class: /api/pipe | ||||||
|  | api_string_name: coref | ||||||
|  | api_trainable: true | ||||||
|  | --- | ||||||
|  | 
 | ||||||
|  | > #### Installation | ||||||
|  | > | ||||||
|  | > ```bash | ||||||
|  | > $ pip install -U spacy-experimental | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | <Infobox title="Important note" variant="warning"> | ||||||
|  | 
 | ||||||
|  | This component is not yet integrated into spaCy core, and is available via the | ||||||
|  | extension package | ||||||
|  | [`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting | ||||||
|  | in version 0.6.0. It exposes the component via | ||||||
|  | [entry points](/usage/saving-loading/#entry-points), so if you have the package | ||||||
|  | installed, using `factory = "experimental_coref"` in your | ||||||
|  | [training config](/usage/training#config) or | ||||||
|  | `nlp.add_pipe("experimental_coref")` will work out-of-the-box. | ||||||
|  | 
 | ||||||
|  | </Infobox> | ||||||
|  | 
 | ||||||
|  | A `CoreferenceResolver` component groups tokens into clusters that refer to the | ||||||
|  | same thing. Clusters are represented as SpanGroups that start with a prefix | ||||||
|  | (`coref_clusters` by default). | ||||||
|  | 
 | ||||||
|  | A `CoreferenceResolver` component can be paired with a | ||||||
|  | [`SpanResolver`](/api/span-resolver) to expand single tokens to spans. | ||||||
|  | 
 | ||||||
|  | ## Assigned Attributes {#assigned-attributes} | ||||||
|  | 
 | ||||||
|  | Predictions will be saved to `Doc.spans` as a [`SpanGroup`](/api/spangroup). The | ||||||
|  | span key will be a prefix plus a serial number referring to the coreference | ||||||
|  | cluster, starting from zero. | ||||||
|  | 
 | ||||||
|  | The span key prefix defaults to `"coref_clusters"`, but can be passed as a | ||||||
|  | parameter. | ||||||
|  | 
 | ||||||
|  | | Location                                   | Value                                                                                                   | | ||||||
|  | | ------------------------------------------ | ------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `Doc.spans[prefix + "_" + cluster_number]` | One coreference cluster, represented as single-token spans. Cluster numbers start from 1. ~~SpanGroup~~ | | ||||||
|  | 
 | ||||||
|  | ## Config and implementation {#config} | ||||||
|  | 
 | ||||||
|  | The default config is defined by the pipeline component factory and describes | ||||||
|  | how the component should be configured. You can override its settings via the | ||||||
|  | `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your | ||||||
|  | [`config.cfg` for training](/usage/training#config). See the | ||||||
|  | [model architectures](/api/architectures#coref-architectures) documentation for | ||||||
|  | details on the architectures and their arguments and hyperparameters. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > from spacy_experimental.coref.coref_component import DEFAULT_COREF_MODEL | ||||||
|  | > from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX | ||||||
|  | > config={ | ||||||
|  | >     "model": DEFAULT_COREF_MODEL, | ||||||
|  | >     "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX, | ||||||
|  | > }, | ||||||
|  | > nlp.add_pipe("experimental_coref", config=config) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Setting               | Description                                                                                                                              | | ||||||
|  | | --------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `model`               | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Coref](/api/architectures#Coref). ~~Model~~ | | ||||||
|  | | `span_cluster_prefix` | The prefix for the keys for clusters saved to `doc.spans`. Defaults to `coref_clusters`. ~~str~~                                         | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.\_\_init\_\_ {#init tag="method"} | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > # Construction via add_pipe with default model | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > | ||||||
|  | > # Construction via add_pipe with custom model | ||||||
|  | > config = {"model": {"@architectures": "my_coref.v1"}} | ||||||
|  | > coref = nlp.add_pipe("experimental_coref", config=config) | ||||||
|  | > | ||||||
|  | > # Construction from class | ||||||
|  | > from spacy_experimental.coref.coref_component import CoreferenceResolver | ||||||
|  | > coref = CoreferenceResolver(nlp.vocab, model) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | Create a new pipeline instance. In your application, you would normally use a | ||||||
|  | shortcut for this and instantiate the component using its string name and | ||||||
|  | [`nlp.add_pipe`](/api/language#add_pipe). | ||||||
|  | 
 | ||||||
|  | | Name                  | Description                                                                                         | | ||||||
|  | | --------------------- | --------------------------------------------------------------------------------------------------- | | ||||||
|  | | `vocab`               | The shared vocabulary. ~~Vocab~~                                                                    | | ||||||
|  | | `model`               | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~           | | ||||||
|  | | `name`                | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | ||||||
|  | | _keyword-only_        |                                                                                                     | | ||||||
|  | | `span_cluster_prefix` | The prefix for the key for saving clusters of spans. ~~bool~~                                       | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.\_\_call\_\_ {#call tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the pipe to one document. The document is modified in place and returned. | ||||||
|  | This usually happens under the hood when the `nlp` object is called on a text | ||||||
|  | and all pipeline components are applied to the `Doc` in order. Both | ||||||
|  | [`__call__`](/api/coref#call) and [`pipe`](/api/coref#pipe) delegate to the | ||||||
|  | [`predict`](/api/coref#predict) and | ||||||
|  | [`set_annotations`](/api/coref#set_annotations) methods. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > doc = nlp("This is a sentence.") | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > # This usually happens under the hood | ||||||
|  | > processed = coref(doc) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                      | | ||||||
|  | | ----------- | -------------------------------- | | ||||||
|  | | `doc`       | The document to process. ~~Doc~~ | | ||||||
|  | | **RETURNS** | The processed document. ~~Doc~~  | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.pipe {#pipe tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the pipe to a stream of documents. This usually happens under the hood | ||||||
|  | when the `nlp` object is called on a text and all pipeline components are | ||||||
|  | applied to the `Doc` in order. Both [`__call__`](/api/coref#call) and | ||||||
|  | [`pipe`](/api/coref#pipe) delegate to the [`predict`](/api/coref#predict) and | ||||||
|  | [`set_annotations`](/api/coref#set_annotations) methods. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > for doc in coref.pipe(docs, batch_size=50): | ||||||
|  | >     pass | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                   | | ||||||
|  | | -------------- | ------------------------------------------------------------- | | ||||||
|  | | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      | | ||||||
|  | | _keyword-only_ |                                                               | | ||||||
|  | | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ | | ||||||
|  | | **YIELDS**     | The processed documents in order. ~~Doc~~                     | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.initialize {#initialize tag="method"} | ||||||
|  | 
 | ||||||
|  | Initialize the component for training. `get_examples` should be a function that | ||||||
|  | returns an iterable of [`Example`](/api/example) objects. **At least one example | ||||||
|  | should be supplied.** The data examples are used to **initialize the model** of | ||||||
|  | the component and can either be the full training data or a representative | ||||||
|  | sample. Initialization includes validating the network, | ||||||
|  | [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and | ||||||
|  | setting up the label scheme based on the data. This method is typically called | ||||||
|  | by [`Language.initialize`](/api/language#initialize). | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > coref.initialize(lambda: examples, nlp=nlp) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                                                                                | | ||||||
|  | | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                                                                                            | | ||||||
|  | | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                       | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.predict {#predict tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the component's model to a batch of [`Doc`](/api/doc) objects, without | ||||||
|  | modifying them. Clusters are returned as a list of `MentionClusters`, one for | ||||||
|  | each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs | ||||||
|  | of `int`s, where each item corresponds to a cluster, and the `int`s correspond | ||||||
|  | to token indices. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > clusters = coref.predict([doc1, doc2]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                                                                  | | ||||||
|  | | ----------- | ---------------------------------------------------------------------------- | | ||||||
|  | | `docs`      | The documents to predict. ~~Iterable[Doc]~~                                  | | ||||||
|  | | **RETURNS** | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.set_annotations {#set_annotations tag="method"} | ||||||
|  | 
 | ||||||
|  | Modify a batch of documents, saving coreference clusters in `Doc.spans`. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > clusters = coref.predict([doc1, doc2]) | ||||||
|  | > coref.set_annotations([doc1, doc2], clusters) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name       | Description                                                                  | | ||||||
|  | | ---------- | ---------------------------------------------------------------------------- | | ||||||
|  | | `docs`     | The documents to modify. ~~Iterable[Doc]~~                                   | | ||||||
|  | | `clusters` | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.update {#update tag="method"} | ||||||
|  | 
 | ||||||
|  | Learn from a batch of [`Example`](/api/example) objects. Delegates to | ||||||
|  | [`predict`](/api/coref#predict). | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > optimizer = nlp.initialize() | ||||||
|  | > losses = coref.update(examples, sgd=optimizer) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                              | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------------------------------------ | | ||||||
|  | | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        | | ||||||
|  | | _keyword-only_ |                                                                                                                          | | ||||||
|  | | `drop`         | The dropout rate. ~~float~~                                                                                              | | ||||||
|  | | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            | | ||||||
|  | | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | ||||||
|  | | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.create_optimizer {#create_optimizer tag="method"} | ||||||
|  | 
 | ||||||
|  | Create an optimizer for the pipeline component. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > optimizer = coref.create_optimizer() | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                  | | ||||||
|  | | ----------- | ---------------------------- | | ||||||
|  | | **RETURNS** | The optimizer. ~~Optimizer~~ | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.use_params {#use_params tag="method, contextmanager"} | ||||||
|  | 
 | ||||||
|  | Modify the pipe's model, to use the given parameter values. At the end of the | ||||||
|  | context, the original parameters are restored. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > with coref.use_params(optimizer.averages): | ||||||
|  | >     coref.to_disk("/best_model") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name     | Description                                        | | ||||||
|  | | -------- | -------------------------------------------------- | | ||||||
|  | | `params` | The parameter values to use in the model. ~~dict~~ | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.to_disk {#to_disk tag="method"} | ||||||
|  | 
 | ||||||
|  | Serialize the pipe to disk. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > coref.to_disk("/path/to/coref") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                                                | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | ||||||
|  | | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                                                            | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.from_disk {#from_disk tag="method"} | ||||||
|  | 
 | ||||||
|  | Load the pipe from disk. Modifies the object in place and returns it. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > coref.from_disk("/path/to/coref") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                     | | ||||||
|  | | -------------- | ----------------------------------------------------------------------------------------------- | | ||||||
|  | | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                 | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     | | ||||||
|  | | **RETURNS**    | The modified `CoreferenceResolver` object. ~~CoreferenceResolver~~                              | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.to_bytes {#to_bytes tag="method"} | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > coref_bytes = coref.to_bytes() | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | Serialize the pipe to a bytestring, including the `KnowledgeBase`. | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                 | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------- | | ||||||
|  | | _keyword-only_ |                                                                                             | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | ||||||
|  | | **RETURNS**    | The serialized form of the `CoreferenceResolver` object. ~~bytes~~                          | | ||||||
|  | 
 | ||||||
|  | ## CoreferenceResolver.from_bytes {#from_bytes tag="method"} | ||||||
|  | 
 | ||||||
|  | Load the pipe from a bytestring. Modifies the object in place and returns it. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > coref_bytes = coref.to_bytes() | ||||||
|  | > coref = nlp.add_pipe("experimental_coref") | ||||||
|  | > coref.from_bytes(coref_bytes) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                 | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------- | | ||||||
|  | | `bytes_data`   | The data to load from. ~~bytes~~                                                            | | ||||||
|  | | _keyword-only_ |                                                                                             | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | ||||||
|  | | **RETURNS**    | The `CoreferenceResolver` object. ~~CoreferenceResolver~~                                   | | ||||||
|  | 
 | ||||||
|  | ## Serialization fields {#serialization-fields} | ||||||
|  | 
 | ||||||
|  | During serialization, spaCy will export several data fields used to restore | ||||||
|  | different aspects of the object. If needed, you can exclude them from | ||||||
|  | serialization by passing in the string names via the `exclude` argument. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > data = coref.to_disk("/path", exclude=["vocab"]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name    | Description                                                    | | ||||||
|  | | ------- | -------------------------------------------------------------- | | ||||||
|  | | `vocab` | The shared [`Vocab`](/api/vocab).                              | | ||||||
|  | | `cfg`   | The config file. You usually don't want to exclude this.       | | ||||||
|  | | `model` | The binary model data. You usually don't want to exclude this. | | ||||||
|  | @ -153,3 +153,36 @@ whole pipeline has run. | ||||||
| | `attrs`     | A dict of the `Doc` attributes and the values to set them to. Defaults to `{"tensor": None, "_.trf_data": None}` to clean up after `tok2vec` and `transformer` components. ~~dict~~ | | | `attrs`     | A dict of the `Doc` attributes and the values to set them to. Defaults to `{"tensor": None, "_.trf_data": None}` to clean up after `tok2vec` and `transformer` components. ~~dict~~ | | ||||||
| | `silent`    | If `False`, show warnings if attributes aren't found or can't be set. Defaults to `True`. ~~bool~~                                                                                  | | | `silent`    | If `False`, show warnings if attributes aren't found or can't be set. Defaults to `True`. ~~bool~~                                                                                  | | ||||||
| | **RETURNS** | The modified `Doc` with the modified attributes. ~~Doc~~                                                                                                                            | | | **RETURNS** | The modified `Doc` with the modified attributes. ~~Doc~~                                                                                                                            | | ||||||
|  | 
 | ||||||
|  | ## span_cleaner {#span_cleaner tag="function,experimental"} | ||||||
|  | 
 | ||||||
|  | Remove `SpanGroup`s from `doc.spans` based on a key prefix. This is used to | ||||||
|  | clean up after the [`CoreferenceResolver`](/api/coref) when it's paired with a | ||||||
|  | [`SpanResolver`](/api/span-resolver). | ||||||
|  | 
 | ||||||
|  | <Infobox title="Important note" variant="warning"> | ||||||
|  | 
 | ||||||
|  | This pipeline function is not yet integrated into spaCy core, and is available | ||||||
|  | via the extension package | ||||||
|  | [`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting | ||||||
|  | in version 0.6.0. It exposes the component via | ||||||
|  | [entry points](/usage/saving-loading/#entry-points), so if you have the package | ||||||
|  | installed, using `factory = "span_cleaner"` in your | ||||||
|  | [training config](/usage/training#config) or `nlp.add_pipe("span_cleaner")` will | ||||||
|  | work out-of-the-box. | ||||||
|  | 
 | ||||||
|  | </Infobox> | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > config = {"prefix": "coref_head_clusters"} | ||||||
|  | > nlp.add_pipe("span_cleaner", config=config) | ||||||
|  | > doc = nlp("text") | ||||||
|  | > assert "coref_head_clusters_1" not in doc.spans | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Setting     | Description                                                                                                               | | ||||||
|  | | ----------- | ------------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `prefix`    | A prefix to check `SpanGroup` keys for. Any matching groups will be removed. Defaults to `"coref_head_clusters"`. ~~str~~ | | ||||||
|  | | **RETURNS** | The modified `Doc` with any matching spans removed. ~~Doc~~                                                               | | ||||||
|  |  | ||||||
|  | @ -270,3 +270,62 @@ Compute micro-PRF and per-entity PRF scores. | ||||||
| | Name       | Description                                                                                                         | | | Name       | Description                                                                                                         | | ||||||
| | ---------- | ------------------------------------------------------------------------------------------------------------------- | | | ---------- | ------------------------------------------------------------------------------------------------------------------- | | ||||||
| | `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | | | `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | | ||||||
|  | 
 | ||||||
|  | ## score_coref_clusters {#score_coref_clusters tag="experimental"} | ||||||
|  | 
 | ||||||
|  | Returns LEA ([Moosavi and Strube, 2016](https://aclanthology.org/P16-1060/)) PRF | ||||||
|  | scores for coreference clusters. | ||||||
|  | 
 | ||||||
|  | <Infobox title="Important note" variant="warning"> | ||||||
|  | 
 | ||||||
|  | Note this scoring function is not yet included in spaCy core - for details, see | ||||||
|  | the [CoreferenceResolver](/api/coref) docs. | ||||||
|  | 
 | ||||||
|  | </Infobox> | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > scores = score_coref_clusters( | ||||||
|  | >     examples, | ||||||
|  | >     span_cluster_prefix="coref_clusters", | ||||||
|  | > ) | ||||||
|  | > print(scores["coref_f"]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name                  | Description                                                                                                         | | ||||||
|  | | --------------------- | ------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `examples`            | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | | ||||||
|  | | _keyword-only_        |                                                                                                                     | | ||||||
|  | | `span_cluster_prefix` | The prefix used for spans representing coreference clusters. ~~str~~                                                | | ||||||
|  | | **RETURNS**           | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~                                                  | | ||||||
|  | 
 | ||||||
|  | ## score_span_predictions {#score_span_predictions tag="experimental"} | ||||||
|  | 
 | ||||||
|  | Return accuracy for reconstructions of spans from single tokens. Only exactly | ||||||
|  | correct predictions are counted as correct, there is no partial credit for near | ||||||
|  | answers. Used by the [SpanResolver](/api/span-resolver). | ||||||
|  | 
 | ||||||
|  | <Infobox title="Important note" variant="warning"> | ||||||
|  | 
 | ||||||
|  | Note this scoring function is not yet included in spaCy core - for details, see | ||||||
|  | the [SpanResolver](/api/span-resolver) docs. | ||||||
|  | 
 | ||||||
|  | </Infobox> | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > scores = score_span_predictions( | ||||||
|  | >     examples, | ||||||
|  | >     output_prefix="coref_clusters", | ||||||
|  | > ) | ||||||
|  | > print(scores["span_coref_clusters_accuracy"]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name            | Description                                                                                                         | | ||||||
|  | | --------------- | ------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `examples`      | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ | | ||||||
|  | | _keyword-only_  |                                                                                                                     | | ||||||
|  | | `output_prefix` | The prefix used for spans representing the final predicted spans. ~~str~~                                           | | ||||||
|  | | **RETURNS**     | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~                                                  | | ||||||
|  |  | ||||||
							
								
								
									
										356
									
								
								website/docs/api/span-resolver.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										356
									
								
								website/docs/api/span-resolver.md
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,356 @@ | ||||||
|  | --- | ||||||
|  | title: SpanResolver | ||||||
|  | tag: class,experimental | ||||||
|  | source: spacy-experimental/coref/span_resolver_component.py | ||||||
|  | teaser: 'Pipeline component for resolving tokens into spans' | ||||||
|  | api_base_class: /api/pipe | ||||||
|  | api_string_name: span_resolver | ||||||
|  | api_trainable: true | ||||||
|  | --- | ||||||
|  | 
 | ||||||
|  | > #### Installation | ||||||
|  | > | ||||||
|  | > ```bash | ||||||
|  | > $ pip install -U spacy-experimental | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | <Infobox title="Important note" variant="warning"> | ||||||
|  | 
 | ||||||
|  | This component not yet integrated into spaCy core, and is available via the | ||||||
|  | extension package | ||||||
|  | [`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting | ||||||
|  | in version 0.6.0. It exposes the component via | ||||||
|  | [entry points](/usage/saving-loading/#entry-points), so if you have the package | ||||||
|  | installed, using `factory = "experimental_span_resolver"` in your | ||||||
|  | [training config](/usage/training#config) or | ||||||
|  | `nlp.add_pipe("experimental_span_resolver")` will work out-of-the-box. | ||||||
|  | 
 | ||||||
|  | </Infobox> | ||||||
|  | 
 | ||||||
|  | A `SpanResolver` component takes in tokens (represented as `Span` objects of | ||||||
|  | length 1) and resolves them into `Span` objects of arbitrary length. The initial | ||||||
|  | use case is as a post-processing step on word-level | ||||||
|  | [coreference resolution](/api/coref). The input and output keys used to store | ||||||
|  | `Span` objects are configurable. | ||||||
|  | 
 | ||||||
|  | ## Assigned Attributes {#assigned-attributes} | ||||||
|  | 
 | ||||||
|  | Predictions will be saved to `Doc.spans` as [`SpanGroup`s](/api/spangroup). | ||||||
|  | 
 | ||||||
|  | Input token spans will be read in using an input prefix, by default | ||||||
|  | `"coref_head_clusters"`, and output spans will be saved using an output prefix | ||||||
|  | (default `"coref_clusters"`) plus a serial number starting from one. The | ||||||
|  | prefixes are configurable. | ||||||
|  | 
 | ||||||
|  | | Location                                          | Value                                                                     | | ||||||
|  | | ------------------------------------------------- | ------------------------------------------------------------------------- | | ||||||
|  | | `Doc.spans[output_prefix + "_" + cluster_number]` | One group of predicted spans. Cluster number starts from 1. ~~SpanGroup~~ | | ||||||
|  | 
 | ||||||
|  | ## Config and implementation {#config} | ||||||
|  | 
 | ||||||
|  | The default config is defined by the pipeline component factory and describes | ||||||
|  | how the component should be configured. You can override its settings via the | ||||||
|  | `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your | ||||||
|  | [`config.cfg` for training](/usage/training#config). See the | ||||||
|  | [model architectures](/api/architectures#coref-architectures) documentation for | ||||||
|  | details on the architectures and their arguments and hyperparameters. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > from spacy_experimental.coref.span_resolver_component import DEFAULT_SPAN_RESOLVER_MODEL | ||||||
|  | > from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX, DEFAULT_CLUSTER_HEAD_PREFIX | ||||||
|  | > config={ | ||||||
|  | >     "model": DEFAULT_SPAN_RESOLVER_MODEL, | ||||||
|  | >     "input_prefix": DEFAULT_CLUSTER_HEAD_PREFIX, | ||||||
|  | >     "output_prefix": DEFAULT_CLUSTER_PREFIX, | ||||||
|  | > }, | ||||||
|  | > nlp.add_pipe("experimental_span_resolver", config=config) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Setting         | Description                                                                                                                                            | | ||||||
|  | | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | | ||||||
|  | | `model`         | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanResolver](/api/architectures#SpanResolver). ~~Model~~ | | ||||||
|  | | `input_prefix`  | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~                                                                   | | ||||||
|  | | `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~                                                                           | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.\_\_init\_\_ {#init tag="method"} | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > # Construction via add_pipe with default model | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > | ||||||
|  | > # Construction via add_pipe with custom model | ||||||
|  | > config = {"model": {"@architectures": "my_span_resolver.v1"}} | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver", config=config) | ||||||
|  | > | ||||||
|  | > # Construction from class | ||||||
|  | > from spacy_experimental.coref.span_resolver_component import SpanResolver | ||||||
|  | > span_resolver = SpanResolver(nlp.vocab, model) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | Create a new pipeline instance. In your application, you would normally use a | ||||||
|  | shortcut for this and instantiate the component using its string name and | ||||||
|  | [`nlp.add_pipe`](/api/language#add_pipe). | ||||||
|  | 
 | ||||||
|  | | Name            | Description                                                                                         | | ||||||
|  | | --------------- | --------------------------------------------------------------------------------------------------- | | ||||||
|  | | `vocab`         | The shared vocabulary. ~~Vocab~~                                                                    | | ||||||
|  | | `model`         | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~           | | ||||||
|  | | `name`          | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | ||||||
|  | | _keyword-only_  |                                                                                                     | | ||||||
|  | | `input_prefix`  | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~                | | ||||||
|  | | `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~                        | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.\_\_call\_\_ {#call tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the pipe to one document. The document is modified in place and returned. | ||||||
|  | This usually happens under the hood when the `nlp` object is called on a text | ||||||
|  | and all pipeline components are applied to the `Doc` in order. Both | ||||||
|  | [`__call__`](#call) and [`pipe`](#pipe) delegate to the [`predict`](#predict) | ||||||
|  | and [`set_annotations`](#set_annotations) methods. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > doc = nlp("This is a sentence.") | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > # This usually happens under the hood | ||||||
|  | > processed = span_resolver(doc) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                      | | ||||||
|  | | ----------- | -------------------------------- | | ||||||
|  | | `doc`       | The document to process. ~~Doc~~ | | ||||||
|  | | **RETURNS** | The processed document. ~~Doc~~  | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.pipe {#pipe tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the pipe to a stream of documents. This usually happens under the hood | ||||||
|  | when the `nlp` object is called on a text and all pipeline components are | ||||||
|  | applied to the `Doc` in order. Both [`__call__`](/api/span-resolver#call) and | ||||||
|  | [`pipe`](/api/span-resolver#pipe) delegate to the | ||||||
|  | [`predict`](/api/span-resolver#predict) and | ||||||
|  | [`set_annotations`](/api/span-resolver#set_annotations) methods. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > for doc in span_resolver.pipe(docs, batch_size=50): | ||||||
|  | >     pass | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                   | | ||||||
|  | | -------------- | ------------------------------------------------------------- | | ||||||
|  | | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      | | ||||||
|  | | _keyword-only_ |                                                               | | ||||||
|  | | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ | | ||||||
|  | | **YIELDS**     | The processed documents in order. ~~Doc~~                     | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.initialize {#initialize tag="method"} | ||||||
|  | 
 | ||||||
|  | Initialize the component for training. `get_examples` should be a function that | ||||||
|  | returns an iterable of [`Example`](/api/example) objects. **At least one example | ||||||
|  | should be supplied.** The data examples are used to **initialize the model** of | ||||||
|  | the component and can either be the full training data or a representative | ||||||
|  | sample. Initialization includes validating the network, | ||||||
|  | [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and | ||||||
|  | setting up the label scheme based on the data. This method is typically called | ||||||
|  | by [`Language.initialize`](/api/language#initialize). | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > span_resolver.initialize(lambda: examples, nlp=nlp) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                                                                                | | ||||||
|  | | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||||
|  | | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                                                                                            | | ||||||
|  | | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                       | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.predict {#predict tag="method"} | ||||||
|  | 
 | ||||||
|  | Apply the component's model to a batch of [`Doc`](/api/doc) objects, without | ||||||
|  | modifying them. Predictions are returned as a list of `MentionClusters`, one for | ||||||
|  | each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs | ||||||
|  | of `int`s, where each item corresponds to an input `SpanGroup`, and the `int`s | ||||||
|  | correspond to token indices. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > spans = span_resolver.predict([doc1, doc2]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                                                   | | ||||||
|  | | ----------- | ------------------------------------------------------------- | | ||||||
|  | | `docs`      | The documents to predict. ~~Iterable[Doc]~~                   | | ||||||
|  | | **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.set_annotations {#set_annotations tag="method"} | ||||||
|  | 
 | ||||||
|  | Modify a batch of documents, saving predictions using the output prefix in | ||||||
|  | `Doc.spans`. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > spans = span_resolver.predict([doc1, doc2]) | ||||||
|  | > span_resolver.set_annotations([doc1, doc2], spans) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name    | Description                                                   | | ||||||
|  | | ------- | ------------------------------------------------------------- | | ||||||
|  | | `docs`  | The documents to modify. ~~Iterable[Doc]~~                    | | ||||||
|  | | `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.update {#update tag="method"} | ||||||
|  | 
 | ||||||
|  | Learn from a batch of [`Example`](/api/example) objects. Delegates to | ||||||
|  | [`predict`](/api/span-resolver#predict). | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > optimizer = nlp.initialize() | ||||||
|  | > losses = span_resolver.update(examples, sgd=optimizer) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                              | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------------------------------------ | | ||||||
|  | | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        | | ||||||
|  | | _keyword-only_ |                                                                                                                          | | ||||||
|  | | `drop`         | The dropout rate. ~~float~~                                                                                              | | ||||||
|  | | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            | | ||||||
|  | | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | | ||||||
|  | | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.create_optimizer {#create_optimizer tag="method"} | ||||||
|  | 
 | ||||||
|  | Create an optimizer for the pipeline component. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > optimizer = span_resolver.create_optimizer() | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name        | Description                  | | ||||||
|  | | ----------- | ---------------------------- | | ||||||
|  | | **RETURNS** | The optimizer. ~~Optimizer~~ | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.use_params {#use_params tag="method, contextmanager"} | ||||||
|  | 
 | ||||||
|  | Modify the pipe's model, to use the given parameter values. At the end of the | ||||||
|  | context, the original parameters are restored. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > with span_resolver.use_params(optimizer.averages): | ||||||
|  | >     span_resolver.to_disk("/best_model") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name     | Description                                        | | ||||||
|  | | -------- | -------------------------------------------------- | | ||||||
|  | | `params` | The parameter values to use in the model. ~~dict~~ | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.to_disk {#to_disk tag="method"} | ||||||
|  | 
 | ||||||
|  | Serialize the pipe to disk. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > span_resolver.to_disk("/path/to/span_resolver") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                                                                | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | ||||||
|  | | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                                                            | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.from_disk {#from_disk tag="method"} | ||||||
|  | 
 | ||||||
|  | Load the pipe from disk. Modifies the object in place and returns it. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > span_resolver.from_disk("/path/to/span_resolver") | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                     | | ||||||
|  | | -------------- | ----------------------------------------------------------------------------------------------- | | ||||||
|  | | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | | ||||||
|  | | _keyword-only_ |                                                                                                 | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     | | ||||||
|  | | **RETURNS**    | The modified `SpanResolver` object. ~~SpanResolver~~                                            | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.to_bytes {#to_bytes tag="method"} | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > span_resolver_bytes = span_resolver.to_bytes() | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | Serialize the pipe to a bytestring. | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                 | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------- | | ||||||
|  | | _keyword-only_ |                                                                                             | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | ||||||
|  | | **RETURNS**    | The serialized form of the `SpanResolver` object. ~~bytes~~                                 | | ||||||
|  | 
 | ||||||
|  | ## SpanResolver.from_bytes {#from_bytes tag="method"} | ||||||
|  | 
 | ||||||
|  | Load the pipe from a bytestring. Modifies the object in place and returns it. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > span_resolver_bytes = span_resolver.to_bytes() | ||||||
|  | > span_resolver = nlp.add_pipe("experimental_span_resolver") | ||||||
|  | > span_resolver.from_bytes(span_resolver_bytes) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name           | Description                                                                                 | | ||||||
|  | | -------------- | ------------------------------------------------------------------------------------------- | | ||||||
|  | | `bytes_data`   | The data to load from. ~~bytes~~                                                            | | ||||||
|  | | _keyword-only_ |                                                                                             | | ||||||
|  | | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | | ||||||
|  | | **RETURNS**    | The `SpanResolver` object. ~~SpanResolver~~                                                 | | ||||||
|  | 
 | ||||||
|  | ## Serialization fields {#serialization-fields} | ||||||
|  | 
 | ||||||
|  | During serialization, spaCy will export several data fields used to restore | ||||||
|  | different aspects of the object. If needed, you can exclude them from | ||||||
|  | serialization by passing in the string names via the `exclude` argument. | ||||||
|  | 
 | ||||||
|  | > #### Example | ||||||
|  | > | ||||||
|  | > ```python | ||||||
|  | > data = span_resolver.to_disk("/path", exclude=["vocab"]) | ||||||
|  | > ``` | ||||||
|  | 
 | ||||||
|  | | Name    | Description                                                    | | ||||||
|  | | ------- | -------------------------------------------------------------- | | ||||||
|  | | `vocab` | The shared [`Vocab`](/api/vocab).                              | | ||||||
|  | | `cfg`   | The config file. You usually don't want to exclude this.       | | ||||||
|  | | `model` | The binary model data. You usually don't want to exclude this. | | ||||||
|  | @ -94,6 +94,7 @@ | ||||||
|                 "label": "Pipeline", |                 "label": "Pipeline", | ||||||
|                 "items": [ |                 "items": [ | ||||||
|                     { "text": "AttributeRuler", "url": "/api/attributeruler" }, |                     { "text": "AttributeRuler", "url": "/api/attributeruler" }, | ||||||
|  |                     { "text": "CoreferenceResolver", "url": "/api/coref" }, | ||||||
|                     { "text": "DependencyParser", "url": "/api/dependencyparser" }, |                     { "text": "DependencyParser", "url": "/api/dependencyparser" }, | ||||||
|                     { "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" }, |                     { "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" }, | ||||||
|                     { "text": "EntityLinker", "url": "/api/entitylinker" }, |                     { "text": "EntityLinker", "url": "/api/entitylinker" }, | ||||||
|  | @ -104,6 +105,7 @@ | ||||||
|                     { "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" }, |                     { "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" }, | ||||||
|                     { "text": "Sentencizer", "url": "/api/sentencizer" }, |                     { "text": "Sentencizer", "url": "/api/sentencizer" }, | ||||||
|                     { "text": "SpanCategorizer", "url": "/api/spancategorizer" }, |                     { "text": "SpanCategorizer", "url": "/api/spancategorizer" }, | ||||||
|  |                     { "text": "SpanResolver", "url": "/api/span-resolver" }, | ||||||
|                     { "text": "SpanRuler", "url": "/api/spanruler" }, |                     { "text": "SpanRuler", "url": "/api/spanruler" }, | ||||||
|                     { "text": "Tagger", "url": "/api/tagger" }, |                     { "text": "Tagger", "url": "/api/tagger" }, | ||||||
|                     { "text": "TextCategorizer", "url": "/api/textcategorizer" }, |                     { "text": "TextCategorizer", "url": "/api/textcategorizer" }, | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user