From a46bc03abb0857ee8cd11bc83257e3c70aeed705 Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Sun, 3 Jul 2022 16:01:27 +0900 Subject: [PATCH] Add failing test with tokenization mismatch This test only fails due to the explicity assert False at the moment, but the debug output shows that the learned spans are all off by one due to misalignment. So the code still needs fixing. --- spacy/tests/pipeline/test_span_predictor.py | 84 +++++++++++++++++++-- 1 file changed, 78 insertions(+), 6 deletions(-) diff --git a/spacy/tests/pipeline/test_span_predictor.py b/spacy/tests/pipeline/test_span_predictor.py index 7d7a75279..9281df354 100644 --- a/spacy/tests/pipeline/test_span_predictor.py +++ b/spacy/tests/pipeline/test_span_predictor.py @@ -21,22 +21,22 @@ TRAIN_DATA = [ { "spans": { f"{DEFAULT_CLUSTER_PREFIX}_1": [ - (0, 11, "MENTION"), # John Smith - (38, 41, "MENTION"), # he + (0, 10, "MENTION"), # John Smith + (38, 40, "MENTION"), # he ], f"{DEFAULT_CLUSTER_PREFIX}_2": [ (25, 33, "MENTION"), # red ball - (47, 50, "MENTION"), # it + (47, 49, "MENTION"), # it ], f"coref_head_clusters_1": [ - (5, 11, "MENTION"), # Smith - (38, 41, "MENTION"), # he + (5, 10, "MENTION"), # Smith + (38, 40, "MENTION"), # he ], f"coref_head_clusters_2": [ (29, 33, "MENTION"), # red ball - (47, 50, "MENTION"), # it + (47, 49, "MENTION"), # it ] } }, @@ -129,3 +129,75 @@ def test_overfitting_IO(nlp): docs3 = [nlp(text) for text in texts] assert spans2ints(docs1[0]) == spans2ints(docs2[0]) assert spans2ints(docs1[0]) == spans2ints(docs3[0]) + + +@pytest.mark.skipif(not has_torch, reason="Torch not available") +def test_tokenization_mismatch(nlp): + train_examples = [] + for text, annot in TRAIN_DATA: + eg = Example.from_dict(nlp.make_doc(text), annot) + ref = eg.reference + char_spans = {} + for key, cluster in ref.spans.items(): + char_spans[key] = [] + for span in cluster: + char_spans[key].append((span[0].idx, span[-1].idx + len(span[-1]))) + with ref.retokenize() as retokenizer: + # merge "picked up" + retokenizer.merge(ref[2:4]) + + # Note this works because it's the same doc and we know the keys + for key, _ in ref.spans.items(): + spans = char_spans[key] + ref.spans[key] = [ref.char_span(*span) for span in spans] + + # Finally, copy over the head spans to the pred + pred = eg.predicted + for key, val in ref.spans.items(): + if key.startswith("coref_head_clusters"): + spans = char_spans[key] + pred.spans[key] = [pred.char_span(*span) for span in spans] + + train_examples.append(eg) + + nlp.add_pipe("span_predictor", config=CONFIG) + optimizer = nlp.initialize() + test_text = TRAIN_DATA[0][0] + doc = nlp(test_text) + + for i in range(100): + losses = {} + nlp.update(train_examples, sgd=optimizer, losses=losses) + doc = nlp(test_text) + + # test the trained model; need to use doc with head spans on it already + test_doc = train_examples[0].predicted + doc = nlp(test_doc) + + # XXX DEBUG + print("SPANS", len(doc.spans)) + for key, val in doc.spans.items(): + print(key, val) + print("...") + + # Also test the results are still the same after IO + with make_tempdir() as tmp_dir: + nlp.to_disk(tmp_dir) + nlp2 = util.load_model_from_path(tmp_dir) + doc2 = nlp2(test_text) + + # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions + texts = [ + test_text, + "I noticed many friends around me", + "They received it. They received the SMS.", + ] + + # save the docs so they don't get garbage collected + docs1 = list(nlp.pipe(texts)) + docs2 = list(nlp.pipe(texts)) + docs3 = [nlp(text) for text in texts] + assert spans2ints(docs1[0]) == spans2ints(docs2[0]) + assert spans2ints(docs1[0]) == spans2ints(docs3[0]) + assert False +