mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge branch 'master' into feature/el-framework
This commit is contained in:
commit
a4a6bfa4e1
106
.github/contributors/wannaphongcom.md
vendored
Normal file
106
.github/contributors/wannaphongcom.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Wannaphong Phatthiyaphaibun |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 25-3-2019 |
|
||||
| GitHub username | wannaphongcom |
|
||||
| Website (optional) | |
|
|
@ -43,7 +43,11 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||
if "textcat" not in nlp.pipe_names:
|
||||
textcat = nlp.create_pipe(
|
||||
"textcat", config={"architecture": "simple_cnn", "exclusive_classes": True}
|
||||
"textcat",
|
||||
config={
|
||||
"exclusive_classes": True,
|
||||
"architecture": "simple_cnn",
|
||||
}
|
||||
)
|
||||
nlp.add_pipe(textcat, last=True)
|
||||
# otherwise, get it, so we can add labels to it
|
||||
|
@ -56,7 +60,9 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
|
||||
# load the IMDB dataset
|
||||
print("Loading IMDB data...")
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=n_texts)
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data()
|
||||
train_texts = train_texts[:n_texts]
|
||||
train_cats = train_cats[:n_texts]
|
||||
print(
|
||||
"Using {} examples ({} training, {} evaluation)".format(
|
||||
n_texts, len(train_texts), len(dev_texts)
|
||||
|
@ -73,10 +79,12 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
textcat.model.tok2vec.from_bytes(file_.read())
|
||||
print("Training the model...")
|
||||
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
|
||||
batch_sizes = compounding(4.0, 32.0, 1.001)
|
||||
for i in range(n_iter):
|
||||
losses = {}
|
||||
# batch up the examples using spaCy's minibatch
|
||||
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
||||
random.shuffle(train_data)
|
||||
batches = minibatch(train_data, size=batch_sizes)
|
||||
for batch in batches:
|
||||
texts, annotations = zip(*batch)
|
||||
nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
|
||||
|
|
|
@ -43,8 +43,9 @@ redirects = [
|
|||
{from = "/usage/lightning-tour", to = "/usage/spacy-101#lightning-tour"},
|
||||
{from = "/usage/linguistic-features#rule-based-matching", to = "/usage/rule-based-matching"},
|
||||
{from = "/models/comparison", to = "/models"},
|
||||
{from = "/api/#section-cython", to = "/api/cython"},
|
||||
{from = "/api/#cython", to = "/api/cython"},
|
||||
{from = "/api/#section-cython", to = "/api/cython", force = true},
|
||||
{from = "/api/#cython", to = "/api/cython", force = true},
|
||||
{from = "/api/sentencesegmenter", to="/api/sentencizer"},
|
||||
{from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true},
|
||||
{from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true},
|
||||
]
|
||||
|
|
94
spacy/_ml.py
94
spacy/_ml.py
|
@ -81,18 +81,6 @@ def _zero_init(model):
|
|||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.0):
|
||||
keys = [doc.to_array(LOWER) for doc in docs]
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = numpy.array([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = numpy.concatenate(keys)
|
||||
vals = numpy.zeros(keys.shape, dtype='f')
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def with_cpu(ops, model):
|
||||
"""Wrap a model that should run on CPU, transferring inputs and outputs
|
||||
as necessary."""
|
||||
|
@ -133,20 +121,31 @@ def _to_device(ops, X):
|
|||
return ops.asarray(X)
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc_bigrams(docs, drop=0.0):
|
||||
unigrams = [doc.to_array(LOWER) for doc in docs]
|
||||
ops = Model.ops
|
||||
bigrams = [ops.ngrams(2, doc_unis) for doc_unis in unigrams]
|
||||
keys = [ops.xp.concatenate(feats) for feats in zip(unigrams, bigrams)]
|
||||
keys, vals = zip(*[ops.xp.unique(k, return_counts=True) for k in keys])
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = ops.xp.concatenate(keys)
|
||||
vals = ops.asarray(ops.xp.concatenate(vals), dtype="f")
|
||||
return (keys, vals, lengths), None
|
||||
class extract_ngrams(Model):
|
||||
def __init__(self, ngram_size, attr=LOWER):
|
||||
Model.__init__(self)
|
||||
self.ngram_size = ngram_size
|
||||
self.attr = attr
|
||||
|
||||
def begin_update(self, docs, drop=0.0):
|
||||
batch_keys = []
|
||||
batch_vals = []
|
||||
for doc in docs:
|
||||
unigrams = doc.to_array([self.attr])
|
||||
ngrams = [unigrams]
|
||||
for n in range(2, self.ngram_size + 1):
|
||||
ngrams.append(self.ops.ngrams(n, unigrams))
|
||||
keys = self.ops.xp.concatenate(ngrams)
|
||||
keys, vals = self.ops.xp.unique(keys, return_counts=True)
|
||||
batch_keys.append(keys)
|
||||
batch_vals.append(vals)
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = self.ops.asarray([arr.shape[0] for arr in batch_keys], dtype=numpy.int_)
|
||||
batch_keys = self.ops.xp.concatenate(batch_keys)
|
||||
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
|
||||
return (batch_keys, batch_vals, lengths), None
|
||||
|
||||
|
||||
@describe.on_data(
|
||||
|
@ -486,16 +485,6 @@ def zero_init(model):
|
|||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def preprocess_doc(docs, drop=0.0):
|
||||
keys = [doc.to_array([LOWER]) for doc in docs]
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([arr.shape[0] for arr in keys])
|
||||
keys = ops.xp.concatenate(keys)
|
||||
vals = ops.allocate(keys.shape[0]) + 1
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.0):
|
||||
return X[i], None
|
||||
|
@ -602,10 +591,8 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
linear_model = (
|
||||
_preprocess_doc
|
||||
>> with_cpu(Model.ops, LinearModel(nr_class))
|
||||
)
|
||||
linear_model = build_bow_text_classifier(
|
||||
nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False)
|
||||
if cfg.get('exclusive_classes'):
|
||||
output_layer = Softmax(nr_class, nr_class * 2)
|
||||
else:
|
||||
|
@ -623,6 +610,33 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
return model
|
||||
|
||||
|
||||
def build_bow_text_classifier(nr_class, ngram_size=1, exclusive_classes=False,
|
||||
no_output_layer=False, **cfg):
|
||||
with Model.define_operators({">>": chain}):
|
||||
model = (
|
||||
extract_ngrams(ngram_size, attr=ORTH)
|
||||
>> with_cpu(Model.ops,
|
||||
LinearModel(nr_class)
|
||||
)
|
||||
)
|
||||
if not no_output_layer:
|
||||
model = model >> (cpu_softmax if exclusive_classes else logistic)
|
||||
model.nO = nr_class
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def cpu_softmax(X, drop=0.):
|
||||
ops = NumpyOps()
|
||||
|
||||
Y = ops.softmax(X)
|
||||
|
||||
def cpu_softmax_backward(dY, sgd=None):
|
||||
return dY
|
||||
|
||||
return ops.softmax(X), cpu_softmax_backward
|
||||
|
||||
|
||||
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
|
||||
"""
|
||||
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# fmt: off
|
||||
|
||||
__title__ = "spacy"
|
||||
__version__ = "2.1.2"
|
||||
__version__ = "2.1.3"
|
||||
__summary__ = "Industrial-strength Natural Language Processing (NLP) with Python and Cython"
|
||||
__uri__ = "https://spacy.io"
|
||||
__author__ = "Explosion AI"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# encoding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import POS, NOUN, PRON, ADJ, ADV, INTJ, PROPN, DET, NUM, AUX
|
||||
from ...symbols import POS, NOUN, PRON, ADJ, ADV, INTJ, PROPN, DET, NUM, AUX,VERB
|
||||
from ...symbols import ADP, CCONJ, PART, PUNCT, SPACE, SCONJ
|
||||
|
||||
# Source: Korakot Chaovavanich
|
||||
|
@ -16,6 +16,9 @@ TAG_MAP = {
|
|||
"CMTR": {POS: NOUN},
|
||||
"CFQC": {POS: NOUN},
|
||||
"CVBL": {POS: NOUN},
|
||||
# VERB
|
||||
"VACT":{POS:VERB},
|
||||
"VSTA":{POS:VERB},
|
||||
# PRON
|
||||
"PRON": {POS: PRON},
|
||||
"NPRP": {POS: PRON},
|
||||
|
@ -78,6 +81,7 @@ TAG_MAP = {
|
|||
"EAFF": {POS: PART},
|
||||
"AITT": {POS: PART},
|
||||
"NEG": {POS: PART},
|
||||
"EITT": {POS: PART},
|
||||
# PUNCT
|
||||
"PUNCT": {POS: PUNCT},
|
||||
"PUNC": {POS: PUNCT},
|
||||
|
|
|
@ -15,7 +15,7 @@ from .tokenizer import Tokenizer
|
|||
from .vocab import Vocab
|
||||
from .lemmatizer import Lemmatizer
|
||||
from .pipeline import DependencyParser, Tensorizer, Tagger, EntityRecognizer, EntityLinker
|
||||
from .pipeline import SimilarityHook, TextCategorizer, SentenceSegmenter
|
||||
from .pipeline import SimilarityHook, TextCategorizer, Sentencizer
|
||||
from .pipeline import merge_noun_chunks, merge_entities, merge_subtokens
|
||||
from .pipeline import EntityRuler
|
||||
from .compat import izip, basestring_
|
||||
|
@ -120,7 +120,7 @@ class Language(object):
|
|||
"entity_linker": lambda nlp, **cfg: EntityLinker(nlp.vocab, **cfg),
|
||||
"similarity": lambda nlp, **cfg: SimilarityHook(nlp.vocab, **cfg),
|
||||
"textcat": lambda nlp, **cfg: TextCategorizer(nlp.vocab, **cfg),
|
||||
"sentencizer": lambda nlp, **cfg: SentenceSegmenter(nlp.vocab, **cfg),
|
||||
"sentencizer": lambda nlp, **cfg: Sentencizer(**cfg),
|
||||
"merge_noun_chunks": lambda nlp, **cfg: merge_noun_chunks,
|
||||
"merge_entities": lambda nlp, **cfg: merge_entities,
|
||||
"merge_subtokens": lambda nlp, **cfg: merge_subtokens,
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from .pipes import Tagger, DependencyParser, EntityRecognizer, EntityLinker
|
||||
from .pipes import TextCategorizer, Tensorizer, Pipe
|
||||
from .pipes import TextCategorizer, Tensorizer, Pipe, Sentencizer
|
||||
from .entityruler import EntityRuler
|
||||
from .hooks import SentenceSegmenter, SimilarityHook
|
||||
from .functions import merge_entities, merge_noun_chunks, merge_subtokens
|
||||
|
@ -16,6 +16,7 @@ __all__ = [
|
|||
"Tensorizer",
|
||||
"Pipe",
|
||||
"EntityRuler",
|
||||
"Sentencizer",
|
||||
"SentenceSegmenter",
|
||||
"SimilarityHook",
|
||||
"merge_entities",
|
||||
|
|
|
@ -191,7 +191,7 @@ class EntityRuler(object):
|
|||
**kwargs: Other config paramters, mostly for consistency.
|
||||
RETURNS (EntityRuler): The loaded entity ruler.
|
||||
|
||||
DOCS: https://spacy.io/api/entityruler
|
||||
DOCS: https://spacy.io/api/entityruler#to_disk
|
||||
"""
|
||||
path = ensure_path(path)
|
||||
path = path.with_suffix(".jsonl")
|
||||
|
|
|
@ -15,8 +15,6 @@ class SentenceSegmenter(object):
|
|||
initialization, or assign a new strategy to the .strategy attribute.
|
||||
Sentence detection strategies should be generators that take `Doc` objects
|
||||
and yield `Span` objects for each sentence.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencesegmenter
|
||||
"""
|
||||
|
||||
name = "sentencizer"
|
||||
|
@ -35,12 +33,12 @@ class SentenceSegmenter(object):
|
|||
def split_on_punct(doc):
|
||||
start = 0
|
||||
seen_period = False
|
||||
for i, word in enumerate(doc):
|
||||
if seen_period and not word.is_punct:
|
||||
yield doc[start : word.i]
|
||||
start = word.i
|
||||
for i, token in enumerate(doc):
|
||||
if seen_period and not token.is_punct:
|
||||
yield doc[start : token.i]
|
||||
start = token.i
|
||||
seen_period = False
|
||||
elif word.text in [".", "!", "?"]:
|
||||
elif token.text in [".", "!", "?"]:
|
||||
seen_period = True
|
||||
if start < len(doc):
|
||||
yield doc[start : len(doc)]
|
||||
|
|
|
@ -25,6 +25,7 @@ from ..attrs import POS, ID
|
|||
from ..parts_of_speech import X
|
||||
from .._ml import Tok2Vec, build_tagger_model
|
||||
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from .._ml import build_bow_text_classifier
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
from .._ml import masked_language_model, create_default_optimizer
|
||||
from ..errors import Errors, TempErrors
|
||||
|
@ -876,6 +877,8 @@ class TextCategorizer(Pipe):
|
|||
if cfg.get("architecture") == "simple_cnn":
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size, **cfg)
|
||||
return build_simple_cnn_text_classifier(tok2vec, nr_class, **cfg)
|
||||
elif cfg.get("architecture") == "bow":
|
||||
return build_bow_text_classifier(nr_class, **cfg)
|
||||
else:
|
||||
return build_text_classifier(nr_class, **cfg)
|
||||
|
||||
|
@ -1107,4 +1110,90 @@ class EntityLinker(Pipe):
|
|||
pass
|
||||
|
||||
|
||||
__all__ = ["Tagger", "DependencyParser", "EntityRecognizer", "Tensorizer", "TextCategorizer", "EntityLinker"]
|
||||
class Sentencizer(object):
|
||||
"""Segment the Doc into sentences using a rule-based strategy.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer
|
||||
"""
|
||||
|
||||
name = "sentencizer"
|
||||
default_punct_chars = [".", "!", "?"]
|
||||
|
||||
def __init__(self, punct_chars=None, **kwargs):
|
||||
"""Initialize the sentencizer.
|
||||
|
||||
punct_chars (list): Punctuation characters to split on. Will be
|
||||
serialized with the nlp object.
|
||||
RETURNS (Sentencizer): The sentencizer component.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#init
|
||||
"""
|
||||
self.punct_chars = punct_chars or self.default_punct_chars
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the sentencizer to a Doc and set Token.is_sent_start.
|
||||
|
||||
doc (Doc): The document to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#call
|
||||
"""
|
||||
start = 0
|
||||
seen_period = False
|
||||
for i, token in enumerate(doc):
|
||||
is_in_punct_chars = token.text in self.punct_chars
|
||||
token.is_sent_start = i == 0
|
||||
if seen_period and not token.is_punct and not is_in_punct_chars:
|
||||
doc[start].is_sent_start = True
|
||||
start = token.i
|
||||
seen_period = False
|
||||
elif is_in_punct_chars:
|
||||
seen_period = True
|
||||
if start < len(doc):
|
||||
doc[start].is_sent_start = True
|
||||
return doc
|
||||
|
||||
def to_bytes(self, **kwargs):
|
||||
"""Serialize the sentencizer to a bytestring.
|
||||
|
||||
RETURNS (bytes): The serialized object.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#to_bytes
|
||||
"""
|
||||
return srsly.msgpack_dumps({"punct_chars": self.punct_chars})
|
||||
|
||||
def from_bytes(self, bytes_data, **kwargs):
|
||||
"""Load the sentencizer from a bytestring.
|
||||
|
||||
bytes_data (bytes): The data to load.
|
||||
returns (Sentencizer): The loaded object.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#from_bytes
|
||||
"""
|
||||
cfg = srsly.msgpack_loads(bytes_data)
|
||||
self.punct_chars = cfg.get("punct_chars", self.default_punct_chars)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||
"""Serialize the sentencizer to disk.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#to_disk
|
||||
"""
|
||||
path = util.ensure_path(path)
|
||||
path = path.with_suffix(".json")
|
||||
srsly.write_json(path, {"punct_chars": self.punct_chars})
|
||||
|
||||
|
||||
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||
"""Load the sentencizer from disk.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencizer#from_disk
|
||||
"""
|
||||
path = util.ensure_path(path)
|
||||
path = path.with_suffix(".json")
|
||||
cfg = srsly.read_json(path)
|
||||
self.punct_chars = cfg.get("punct_chars", self.default_punct_chars)
|
||||
return self
|
||||
|
||||
|
||||
__all__ = ["Tagger", "DependencyParser", "EntityRecognizer", "Tensorizer", "TextCategorizer", "EntityLinker", "Sentencizer"]
|
||||
|
|
|
@ -574,11 +574,12 @@ cdef class Parser:
|
|||
cfg.setdefault('min_action_freq', 30)
|
||||
actions = self.moves.get_actions(gold_parses=get_gold_tuples(),
|
||||
min_freq=cfg.get('min_action_freq', 30))
|
||||
previous_labels = dict(self.moves.labels)
|
||||
for action, labels in self.moves.labels.items():
|
||||
actions.setdefault(action, {})
|
||||
for label, freq in labels.items():
|
||||
if label not in actions[action]:
|
||||
actions[action][label] = freq
|
||||
self.moves.initialize_actions(actions)
|
||||
for action, label_freqs in previous_labels.items():
|
||||
for label in label_freqs:
|
||||
self.moves.add_action(action, label)
|
||||
cfg.setdefault('token_vector_width', 96)
|
||||
if self.model is True:
|
||||
self.model, cfg = self.Model(self.moves.n_moves, **cfg)
|
||||
|
|
|
@ -8,7 +8,8 @@ from spacy.attrs import NORM
|
|||
from spacy.gold import GoldParse
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc
|
||||
from spacy.pipeline import DependencyParser
|
||||
from spacy.pipeline import DependencyParser, EntityRecognizer
|
||||
from spacy.util import fix_random_seed
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -19,18 +20,6 @@ def vocab():
|
|||
@pytest.fixture
|
||||
def parser(vocab):
|
||||
parser = DependencyParser(vocab)
|
||||
parser.cfg["token_vector_width"] = 8
|
||||
parser.cfg["hidden_width"] = 30
|
||||
parser.cfg["hist_size"] = 0
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
|
||||
for i in range(10):
|
||||
losses = {}
|
||||
doc = Doc(vocab, words=["a", "b", "c", "d"])
|
||||
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
|
||||
parser.update([doc], [gold], sgd=sgd, losses=losses)
|
||||
return parser
|
||||
|
||||
|
||||
|
@ -38,25 +27,23 @@ def test_init_parser(parser):
|
|||
pass
|
||||
|
||||
|
||||
# TODO: This is flakey, because it depends on what the parser first learns.
|
||||
# TODO: This now seems to be implicated in segfaults. Not sure what's up!
|
||||
@pytest.mark.skip
|
||||
def _train_parser(parser):
|
||||
fix_random_seed(1)
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
||||
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
|
||||
parser.update([doc], [gold], sgd=sgd, losses=losses)
|
||||
return parser
|
||||
|
||||
|
||||
def test_add_label(parser):
|
||||
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
||||
doc = parser(doc)
|
||||
assert doc[0].head.i == 1
|
||||
assert doc[0].dep_ == "left"
|
||||
assert doc[1].head.i == 1
|
||||
assert doc[2].head.i == 3
|
||||
assert doc[2].head.i == 3
|
||||
parser = _train_parser(parser)
|
||||
parser.add_label("right")
|
||||
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
||||
doc = parser(doc)
|
||||
assert doc[0].head.i == 1
|
||||
assert doc[0].dep_ == "left"
|
||||
assert doc[1].head.i == 1
|
||||
assert doc[2].head.i == 3
|
||||
assert doc[2].head.i == 3
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
for i in range(10):
|
||||
losses = {}
|
||||
|
@ -69,3 +56,15 @@ def test_add_label(parser):
|
|||
doc = parser(doc)
|
||||
assert doc[0].dep_ == "right"
|
||||
assert doc[2].dep_ == "left"
|
||||
|
||||
|
||||
def test_add_label_deserializes_correctly():
|
||||
ner1 = EntityRecognizer(Vocab())
|
||||
ner1.add_label("C")
|
||||
ner1.add_label("B")
|
||||
ner1.add_label("A")
|
||||
ner1.begin_training([])
|
||||
ner2 = EntityRecognizer(Vocab()).from_bytes(ner1.to_bytes())
|
||||
assert ner1.moves.n_moves == ner2.moves.n_moves
|
||||
for i in range(ner1.moves.n_moves):
|
||||
assert ner1.moves.get_class_name(i) == ner2.moves.get_class_name(i)
|
||||
|
|
87
spacy/tests/pipeline/test_sentencizer.py
Normal file
87
spacy/tests/pipeline/test_sentencizer.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.pipeline import Sentencizer
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_sentencizer(en_vocab):
|
||||
doc = Doc(en_vocab, words=["Hello", "!", "This", "is", "a", "test", "."])
|
||||
sentencizer = Sentencizer()
|
||||
doc = sentencizer(doc)
|
||||
assert doc.is_sentenced
|
||||
sent_starts = [t.is_sent_start for t in doc]
|
||||
assert sent_starts == [True, False, True, False, False, False, False]
|
||||
assert len(list(doc.sents)) == 2
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"words,sent_starts,n_sents",
|
||||
[
|
||||
# The expected result here is that the duplicate punctuation gets merged
|
||||
# onto the same sentence and no one-token sentence is created for them.
|
||||
(
|
||||
["Hello", "!", ".", "Test", ".", ".", "ok"],
|
||||
[True, False, False, True, False, False, True],
|
||||
3,
|
||||
),
|
||||
# We also want to make sure ¡ and ¿ aren't treated as sentence end
|
||||
# markers, even though they're punctuation
|
||||
(
|
||||
["¡", "Buen", "día", "!", "Hola", ",", "¿", "qué", "tal", "?"],
|
||||
[True, False, False, False, True, False, False, False, False, False],
|
||||
2,
|
||||
),
|
||||
# The Token.is_punct check ensures that quotes are handled as well
|
||||
(
|
||||
['"', "Nice", "!", '"', "I", "am", "happy", "."],
|
||||
[True, False, False, False, True, False, False, False],
|
||||
2,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_sentencizer_complex(en_vocab, words, sent_starts, n_sents):
|
||||
doc = Doc(en_vocab, words=words)
|
||||
sentencizer = Sentencizer()
|
||||
doc = sentencizer(doc)
|
||||
assert doc.is_sentenced
|
||||
assert [t.is_sent_start for t in doc] == sent_starts
|
||||
assert len(list(doc.sents)) == n_sents
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"punct_chars,words,sent_starts,n_sents",
|
||||
[
|
||||
(
|
||||
["~", "?"],
|
||||
["Hello", "world", "~", "A", ".", "B", "."],
|
||||
[True, False, False, True, False, False, False],
|
||||
2,
|
||||
),
|
||||
# Even thought it's not common, the punct_chars should be able to
|
||||
# handle any tokens
|
||||
(
|
||||
[".", "ö"],
|
||||
["Hello", ".", "Test", "ö", "Ok", "."],
|
||||
[True, False, True, False, True, False],
|
||||
3,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_sentencizer_custom_punct(en_vocab, punct_chars, words, sent_starts, n_sents):
|
||||
doc = Doc(en_vocab, words=words)
|
||||
sentencizer = Sentencizer(punct_chars=punct_chars)
|
||||
doc = sentencizer(doc)
|
||||
assert doc.is_sentenced
|
||||
assert [t.is_sent_start for t in doc] == sent_starts
|
||||
assert len(list(doc.sents)) == n_sents
|
||||
|
||||
|
||||
def test_sentencizer_serialize_bytes(en_vocab):
|
||||
punct_chars = [".", "~", "+"]
|
||||
sentencizer = Sentencizer(punct_chars=punct_chars)
|
||||
assert sentencizer.punct_chars == punct_chars
|
||||
bytes_data = sentencizer.to_bytes()
|
||||
new_sentencizer = Sentencizer().from_bytes(bytes_data)
|
||||
assert new_sentencizer.punct_chars == punct_chars
|
22
spacy/tests/regression/test_issue3468.py
Normal file
22
spacy/tests/regression/test_issue3468.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_issue3468():
|
||||
"""Test that sentence boundaries are set correctly so Doc.is_sentenced can
|
||||
be restored after serialization."""
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
doc = nlp("Hello world")
|
||||
assert doc[0].is_sent_start
|
||||
assert doc.is_sentenced
|
||||
assert len(list(doc.sents)) == 1
|
||||
doc_bytes = doc.to_bytes()
|
||||
new_doc = Doc(nlp.vocab).from_bytes(doc_bytes)
|
||||
assert new_doc[0].is_sent_start
|
||||
assert new_doc.is_sentenced
|
||||
assert len(list(new_doc.sents)) == 1
|
|
@ -230,7 +230,7 @@ cdef class Doc:
|
|||
defined as having at least one of the following:
|
||||
|
||||
a) An entry "sents" in doc.user_hooks";
|
||||
b) sent.is_parsed is set to True;
|
||||
b) Doc.is_parsed is set to True;
|
||||
c) At least one token other than the first where sent_start is not None.
|
||||
"""
|
||||
if "sents" in self.user_hooks:
|
||||
|
|
|
@ -441,6 +441,7 @@ cdef class Token:
|
|||
|
||||
property sent_start:
|
||||
def __get__(self):
|
||||
"""Deprecated: use Token.is_sent_start instead."""
|
||||
# Raising a deprecation warning here causes errors for autocomplete
|
||||
# Handle broken backwards compatibility case: doc[0].sent_start
|
||||
# was False.
|
||||
|
|
|
@ -1,78 +0,0 @@
|
|||
---
|
||||
title: SentenceSegmenter
|
||||
tag: class
|
||||
source: spacy/pipeline/hooks.py
|
||||
---
|
||||
|
||||
A simple spaCy hook, to allow custom sentence boundary detection logic that
|
||||
doesn't require the dependency parse. By default, sentence segmentation is
|
||||
performed by the [`DependencyParser`](/api/dependencyparser), so the
|
||||
`SentenceSegmenter` lets you implement a simpler, rule-based strategy that
|
||||
doesn't require a statistical model to be loaded. The component is also
|
||||
available via the string name `"sentencizer"`. After initialization, it is
|
||||
typically added to the processing pipeline using
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
## SentenceSegmenter.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Initialize the sentence segmenter. To change the sentence boundary detection
|
||||
strategy, pass a generator function `strategy` on initialization, or assign a
|
||||
new strategy to the `.strategy` attribute. Sentence detection strategies should
|
||||
be generators that take `Doc` objects and yield `Span` objects for each
|
||||
sentence.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via create_pipe
|
||||
> sentencizer = nlp.create_pipe("sentencizer")
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import SentenceSegmenter
|
||||
> sentencizer = SentenceSegmenter(nlp.vocab)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | ----------------------------------------------------------- |
|
||||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||||
| `strategy` | unicode / callable | The segmentation strategy to use. Defaults to `"on_punct"`. |
|
||||
| **RETURNS** | `SentenceSegmenter` | The newly constructed object. |
|
||||
|
||||
## SentenceSegmenter.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the sentence segmenter on a `Doc`. Typically, this happens automatically
|
||||
after the component has been added to the pipeline using
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.lang.en import English
|
||||
>
|
||||
> nlp = English()
|
||||
> sentencizer = nlp.create_pipe("sentencizer")
|
||||
> nlp.add_pipe(sentencizer)
|
||||
> doc = nlp(u"This is a sentence. This is another sentence.")
|
||||
> assert list(doc.sents) == 2
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------------------------------------------ |
|
||||
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
|
||||
| **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. |
|
||||
|
||||
## SentenceSegmenter.split_on_punct {#split_on_punct tag="staticmethod"}
|
||||
|
||||
Split the `Doc` on punctuation characters `.`, `!` and `?`. This is the default
|
||||
strategy used by the `SentenceSegmenter.`
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------- | ------ | ------------------------------ |
|
||||
| `doc` | `Doc` | The `Doc` object to process. |
|
||||
| **YIELDS** | `Span` | The sentences in the document. |
|
||||
|
||||
## Attributes {#attributes}
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------- | -------- | ------------------------------------------------------------------- |
|
||||
| `strategy` | callable | The segmentation strategy. Can be overwritten after initialization. |
|
136
website/docs/api/sentencizer.md
Normal file
136
website/docs/api/sentencizer.md
Normal file
|
@ -0,0 +1,136 @@
|
|||
---
|
||||
title: Sentencizer
|
||||
tag: class
|
||||
source: spacy/pipeline/pipes.pyx
|
||||
---
|
||||
|
||||
A simple pipeline component, to allow custom sentence boundary detection logic
|
||||
that doesn't require the dependency parse. By default, sentence segmentation is
|
||||
performed by the [`DependencyParser`](/api/dependencyparser), so the
|
||||
`Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
|
||||
require a statistical model to be loaded. The component is also available via
|
||||
the string name `"sentencizer"`. After initialization, it is typically added to
|
||||
the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
Compared to the previous `SentenceSegmenter` class, the `Sentencizer` component
|
||||
doesn't add a hook to `doc.user_hooks["sents"]`. Instead, it iterates over the
|
||||
tokens in the `Doc` and sets the `Token.is_sent_start` property. The
|
||||
`SentenceSegmenter` is still available if you import it directly:
|
||||
|
||||
```python
|
||||
from spacy.pipeline import SentenceSegmenter
|
||||
```
|
||||
|
||||
</Infobox>
|
||||
|
||||
## Sentencizer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Initialize the sentencizer.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via create_pipe
|
||||
> sentencizer = nlp.create_pipe("sentencizer")
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import Sentencizer
|
||||
> sentencizer = Sentencizer()
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------- | ------------- | ------------------------------------------------------------------------------------------------------ |
|
||||
| `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. Defaults to `[".", "!", "?"].` |
|
||||
| **RETURNS** | `Sentencizer` | The newly constructed object. |
|
||||
|
||||
## Sentencizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the sentencizer on a `Doc`. Typically, this happens automatically after
|
||||
the component has been added to the pipeline using
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.lang.en import English
|
||||
>
|
||||
> nlp = English()
|
||||
> sentencizer = nlp.create_pipe("sentencizer")
|
||||
> nlp.add_pipe(sentencizer)
|
||||
> doc = nlp(u"This is a sentence. This is another sentence.")
|
||||
> assert list(doc.sents) == 2
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ------------------------------------------------------------ |
|
||||
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
|
||||
| **RETURNS** | `Doc` | The modified `Doc` with added sentence boundaries. |
|
||||
|
||||
## Sentencizer.to_disk {#to_disk tag="method"}
|
||||
|
||||
Save the sentencizer settings (punctuation characters) a directory. Will create
|
||||
a file `sentencizer.json`. This also happens automatically when you save an
|
||||
`nlp` object with a sentencizer added to its pipeline.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
|
||||
> sentencizer.to_disk("/path/to/sentencizer.jsonl")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------ | ---------------- | ---------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | unicode / `Path` | A path to a file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||||
|
||||
## Sentencizer.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the sentencizer settings from a file. Expects a JSON file. This also
|
||||
happens automatically when you load an `nlp` object or model with a sentencizer
|
||||
added to its pipeline.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> sentencizer = Sentencizer()
|
||||
> sentencizer.from_disk("/path/to/sentencizer.json")
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---------------- | -------------------------------------------------------------------------- |
|
||||
| `path` | unicode / `Path` | A path to a JSON file. Paths may be either strings or `Path`-like objects. |
|
||||
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |
|
||||
|
||||
## Sentencizer.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
Serialize the sentencizer settings to a bytestring.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> sentencizer = Sentencizer(punct_chars=[".", "?", "!", "。"])
|
||||
> sentencizer_bytes = sentencizer.to_bytes()
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | -------------------- |
|
||||
| **RETURNS** | bytes | The serialized data. |
|
||||
|
||||
## Sentencizer.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> sentencizer_bytes = sentencizer.to_bytes()
|
||||
> sentencizer = Sentencizer()
|
||||
> sentencizer.from_bytes(sentencizer_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | ------------- | ---------------------------------- |
|
||||
| `bytes_data` | bytes | The bytestring to load. |
|
||||
| **RETURNS** | `Sentencizer` | The modified `Sentencizer` object. |
|
|
@ -56,10 +56,11 @@ of problems. To handle a wider variety of problems, the `TextCategorizer` object
|
|||
allows configuration of its model architecture, using the `architecture` keyword
|
||||
argument.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `"ensemble"` | **Default:** Stacked ensemble of a unigram bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. |
|
||||
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. |
|
||||
| Name | Description |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `"ensemble"` | **Default:** Stacked ensemble of a bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. The "ngram_size" and "attr" arguments can be used to configure the feature extraction for the bag-of-words model. |
|
||||
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. This architecture is usually less accurate than the ensemble, but runs faster. |
|
||||
| `"bow"` | An ngram "bag-of-words" model. This architecture should run much faster than the others, but may not be as accurate, especially if texts are short. The features extracted can be controlled using the keyword arguments `ngram_size` and `attr`. For instance, `ngram_size=3` and `attr="lower"` would give lower-cased unigram, trigram and bigram features. 2, 3 or 4 are usually good choices of ngram size. |
|
||||
|
||||
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
|
BIN
website/docs/images/cheatsheet.jpg
Normal file
BIN
website/docs/images/cheatsheet.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.6 MiB |
|
@ -25,21 +25,21 @@ an **annotated document**. It also orchestrates training and serialization.
|
|||
|
||||
### Processing pipeline {#architecture-pipeline}
|
||||
|
||||
| Name | Description |
|
||||
| --------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`Language`](/api/language) | A text-processing pipeline. Usually you'll load this once per process as `nlp` and pass the instance around your application. |
|
||||
| [`Tokenizer`](/api/tokenizer) | Segment text, and create `Doc` objects with the discovered segment boundaries. |
|
||||
| [`Lemmatizer`](/api/lemmatizer) | Determine the base forms of words. |
|
||||
| `Morphology` | Assign linguistic features like lemmas, noun case, verb tense etc. based on the word and its part-of-speech tag. |
|
||||
| [`Tagger`](/api/tagger) | Annotate part-of-speech tags on `Doc` objects. |
|
||||
| [`DependencyParser`](/api/dependencyparser) | Annotate syntactic dependencies on `Doc` objects. |
|
||||
| [`EntityRecognizer`](/api/entityrecognizer) | Annotate named entities, e.g. persons or products, on `Doc` objects. |
|
||||
| [`TextCategorizer`](/api/textcategorizer) | Assign categories or labels to `Doc` objects. |
|
||||
| [`Matcher`](/api/matcher) | Match sequences of tokens, based on pattern rules, similar to regular expressions. |
|
||||
| [`PhraseMatcher`](/api/phrasematcher) | Match sequences of tokens based on phrases. |
|
||||
| [`EntityRuler`](/api/entityruler) | Add entity spans to the `Doc` using token-based rules or exact phrase matches. |
|
||||
| [`SentenceSegmenter`](/api/sentencesegmenter) | Implement custom sentence boundary detection logic that doesn't require the dependency parse. |
|
||||
| [Other functions](/api/pipeline-functions) | Automatically apply something to the `Doc`, e.g. to merge spans of tokens. |
|
||||
| Name | Description |
|
||||
| ------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`Language`](/api/language) | A text-processing pipeline. Usually you'll load this once per process as `nlp` and pass the instance around your application. |
|
||||
| [`Tokenizer`](/api/tokenizer) | Segment text, and create `Doc` objects with the discovered segment boundaries. |
|
||||
| [`Lemmatizer`](/api/lemmatizer) | Determine the base forms of words. |
|
||||
| `Morphology` | Assign linguistic features like lemmas, noun case, verb tense etc. based on the word and its part-of-speech tag. |
|
||||
| [`Tagger`](/api/tagger) | Annotate part-of-speech tags on `Doc` objects. |
|
||||
| [`DependencyParser`](/api/dependencyparser) | Annotate syntactic dependencies on `Doc` objects. |
|
||||
| [`EntityRecognizer`](/api/entityrecognizer) | Annotate named entities, e.g. persons or products, on `Doc` objects. |
|
||||
| [`TextCategorizer`](/api/textcategorizer) | Assign categories or labels to `Doc` objects. |
|
||||
| [`Matcher`](/api/matcher) | Match sequences of tokens, based on pattern rules, similar to regular expressions. |
|
||||
| [`PhraseMatcher`](/api/phrasematcher) | Match sequences of tokens based on phrases. |
|
||||
| [`EntityRuler`](/api/entityruler) | Add entity spans to the `Doc` using token-based rules or exact phrase matches. |
|
||||
| [`Sentencizer`](/api/sentencizer) | Implement custom sentence boundary detection logic that doesn't require the dependency parse. |
|
||||
| [Other functions](/api/pipeline-functions) | Automatically apply something to the `Doc`, e.g. to merge spans of tokens. |
|
||||
|
||||
### Other classes {#architecture-other}
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ menu:
|
|||
- ['Changelog', 'changelog']
|
||||
---
|
||||
|
||||
spaCy is compatible with **64-bit CPython 2.7+/3.5+** and runs on
|
||||
spaCy is compatible with **64-bit CPython 2.7 / 3.5+** and runs on
|
||||
**Unix/Linux**, **macOS/OS X** and **Windows**. The latest spaCy releases are
|
||||
available over [pip](https://pypi.python.org/pypi/spacy) and
|
||||
[conda](https://anaconda.org/conda-forge/spacy).
|
||||
|
|
|
@ -1149,9 +1149,14 @@ but it also means you'll need a **statistical model** and accurate predictions.
|
|||
If your texts are closer to general-purpose news or web text, this should work
|
||||
well out-of-the-box. For social media or conversational text that doesn't follow
|
||||
the same rules, your application may benefit from a custom rule-based
|
||||
implementation. You can either plug a rule-based component into your
|
||||
[processing pipeline](/usage/processing-pipelines) or use the
|
||||
`SentenceSegmenter` component with a custom strategy.
|
||||
implementation. You can either use the built-in
|
||||
[`Sentencizer`](/api/sentencizer) or plug an entirely custom rule-based function
|
||||
into your [processing pipeline](/usage/processing-pipelines).
|
||||
|
||||
spaCy's dependency parser respects already set boundaries, so you can preprocess
|
||||
your `Doc` using custom rules _before_ it's parsed. Depending on your text, this
|
||||
may also improve accuracy, since the parser is constrained to predict parses
|
||||
consistent with the sentence boundaries.
|
||||
|
||||
### Default: Using the dependency parse {#sbd-parser model="parser"}
|
||||
|
||||
|
@ -1168,13 +1173,35 @@ for sent in doc.sents:
|
|||
print(sent.text)
|
||||
```
|
||||
|
||||
### Setting boundaries manually {#sbd-manual}
|
||||
### Rule-based pipeline component {#sbd-component}
|
||||
|
||||
spaCy's dependency parser respects already set boundaries, so you can preprocess
|
||||
your `Doc` using custom rules _before_ it's parsed. This can be done by adding a
|
||||
[custom pipeline component](/usage/processing-pipelines). Depending on your
|
||||
text, this may also improve accuracy, since the parser is constrained to predict
|
||||
parses consistent with the sentence boundaries.
|
||||
The [`Sentencizer`](/api/sentencizer) component is a
|
||||
[pipeline component](/usage/processing-pipelines) that splits sentences on
|
||||
punctuation like `.`, `!` or `?`. You can plug it into your pipeline if you only
|
||||
need sentence boundaries without the dependency parse.
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
from spacy.lang.en import English
|
||||
|
||||
nlp = English() # just the language with no model
|
||||
sentencizer = nlp.create_pipe("sentencizer")
|
||||
nlp.add_pipe(sentencizer)
|
||||
doc = nlp(u"This is a sentence. This is another sentence.")
|
||||
for sent in doc.sents:
|
||||
print(sent.text)
|
||||
```
|
||||
|
||||
### Custom rule-based strategy {id="sbd-custom"}
|
||||
|
||||
If you want to implement your own strategy that differs from the default
|
||||
rule-based approach of splitting on sentences, you can also create a
|
||||
[custom pipeline component](/usage/processing-pipelines#custom-components) that
|
||||
takes a `Doc` object and sets the `Token.is_sent_start` attribute on each
|
||||
individual token. If set to `False`, the token is explicitly marked as _not_ the
|
||||
start of a sentence. If set to `None` (default), it's treated as a missing value
|
||||
and can still be overwritten by the parser.
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
|
@ -1187,9 +1214,11 @@ adding it to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
|
|||
|
||||
Here's an example of a component that implements a pre-processing rule for
|
||||
splitting on `'...'` tokens. The component is added before the parser, which is
|
||||
then used to further segment the text. This approach can be useful if you want
|
||||
to implement **additional** rules specific to your data, while still being able
|
||||
to take advantage of dependency-based sentence segmentation.
|
||||
then used to further segment the text. That's possible, because `is_sent_start`
|
||||
is only set to `True` for some of the tokens – all others still specify `None`
|
||||
for unset sentence boundaries. This approach can be useful if you want to
|
||||
implement **additional** rules specific to your data, while still being able to
|
||||
take advantage of dependency-based sentence segmentation.
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
|
@ -1212,62 +1241,6 @@ doc = nlp(text)
|
|||
print("After:", [sent.text for sent in doc.sents])
|
||||
```
|
||||
|
||||
### Rule-based pipeline component {#sbd-component}
|
||||
|
||||
The `sentencizer` component is a
|
||||
[pipeline component](/usage/processing-pipelines) that splits sentences on
|
||||
punctuation like `.`, `!` or `?`. You can plug it into your pipeline if you only
|
||||
need sentence boundaries without the dependency parse. Note that `Doc.sents`
|
||||
will **raise an error** if no sentence boundaries are set.
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
from spacy.lang.en import English
|
||||
|
||||
nlp = English() # just the language with no model
|
||||
sentencizer = nlp.create_pipe("sentencizer")
|
||||
nlp.add_pipe(sentencizer)
|
||||
doc = nlp(u"This is a sentence. This is another sentence.")
|
||||
for sent in doc.sents:
|
||||
print(sent.text)
|
||||
```
|
||||
|
||||
### Custom rule-based strategy {#sbd-custom}
|
||||
|
||||
If you want to implement your own strategy that differs from the default
|
||||
rule-based approach of splitting on sentences, you can also instantiate the
|
||||
`SentenceSegmenter` directly and pass in your own strategy. The strategy should
|
||||
be a function that takes a `Doc` object and yields a `Span` for each sentence.
|
||||
Here's an example of a custom segmentation strategy for splitting on newlines
|
||||
only:
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
from spacy.lang.en import English
|
||||
from spacy.pipeline import SentenceSegmenter
|
||||
|
||||
def split_on_newlines(doc):
|
||||
start = 0
|
||||
seen_newline = False
|
||||
for word in doc:
|
||||
if seen_newline and not word.is_space:
|
||||
yield doc[start:word.i]
|
||||
start = word.i
|
||||
seen_newline = False
|
||||
elif word.text == '\\n':
|
||||
seen_newline = True
|
||||
if start < len(doc):
|
||||
yield doc[start:len(doc)]
|
||||
|
||||
nlp = English() # Just the language with no model
|
||||
sentencizer = SentenceSegmenter(nlp.vocab, strategy=split_on_newlines)
|
||||
nlp.add_pipe(sentencizer)
|
||||
doc = nlp(u"This is a sentence\\n\\nThis is another sentence\\nAnd more")
|
||||
for sent in doc.sents:
|
||||
print([token.text for token in sent])
|
||||
```
|
||||
|
||||
## Rule-based matching {#rule-based-matching hidden="true"}
|
||||
|
||||
<div id="rule-based-matching">
|
||||
|
|
|
@ -138,7 +138,7 @@ require them in the pipeline settings in your model's `meta.json`.
|
|||
| `ner` | [`EntityRecognizer`](/api/entityrecognizer) | Assign named entities. |
|
||||
| `textcat` | [`TextCategorizer`](/api/textcategorizer) | Assign text categories. |
|
||||
| `entity_ruler` | [`EntityRuler`](/api/entityruler) | Assign named entities based on pattern rules. |
|
||||
| `sentencizer` | [`SentenceSegmenter`](/api/sentencesegmenter) | Add rule-based sentence segmentation without the dependency parse. |
|
||||
| `sentencizer` | [`Sentencizer`](/api/sentencizer) | Add rule-based sentence segmentation without the dependency parse. |
|
||||
| `merge_noun_chunks` | [`merge_noun_chunks`](/api/pipeline-functions#merge_noun_chunks) | Merge all noun chunks into a single token. Should be added after the tagger and parser. |
|
||||
| `merge_entities` | [`merge_entities`](/api/pipeline-functions#merge_entities) | Merge all entities into a single token. Should be added after the entity recognizer. |
|
||||
| `merge_subtokens` | [`merge_subtokens`](/api/pipeline-functions#merge_subtokens) | Merge subtokens predicted by the parser into single tokens. Should be added after the parser. |
|
||||
|
|
|
@ -404,7 +404,7 @@ class BadHTMLMerger(object):
|
|||
for match_id, start, end in matches:
|
||||
spans.append(doc[start:end])
|
||||
with doc.retokenize() as retokenizer:
|
||||
for span in spans:
|
||||
for span in hashtags:
|
||||
retokenizer.merge(span)
|
||||
for token in span:
|
||||
token._.bad_html = True # Mark token as bad HTML
|
||||
|
|
|
@ -95,6 +95,21 @@ systems, or to pre-process text for **deep learning**.
|
|||
publishing spaCy and other software is called
|
||||
[Explosion AI](https://explosion.ai).
|
||||
|
||||
<Infobox title="Download the spaCy Cheat Sheet!">
|
||||
|
||||
[![spaCy Cheatsheet](../images/cheatsheet.jpg)](http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06)
|
||||
|
||||
For the launch of our
|
||||
["Advanced NLP with spaCy"](https://www.datacamp.com/courses/advanced-nlp-with-spacy)
|
||||
course on DataCamp we created the first official spaCy cheat sheet! A handy
|
||||
two-page reference to the most important concepts and features, from loading
|
||||
models and accessing linguistic annotations, to custom pipeline components and
|
||||
rule-based matching.
|
||||
|
||||
<p><Button to="http://datacamp-community-prod.s3.amazonaws.com/29aa28bf-570a-4965-8f54-d6a541ae4e06" variant="primary">Download</Button></p>
|
||||
|
||||
</Infobox>
|
||||
|
||||
## Features {#features}
|
||||
|
||||
In the documentation, you'll come across mentions of spaCy's features and
|
||||
|
|
|
@ -13,6 +13,8 @@ design changes introduced in [v2.0](/usage/v2). As well as smaller models,
|
|||
faster runtime, and many bug fixes, v2.1 also introduces experimental support
|
||||
for some exciting new NLP innovations. For the full changelog, see the
|
||||
[release notes on GitHub](https://github.com/explosion/spaCy/releases/tag/v2.1.0).
|
||||
For more details and a behind-the-scenes look at the new release,
|
||||
[see our blog post](https://explosion.ai/blog/spacy-v2-1).
|
||||
|
||||
### BERT/ULMFit/Elmo-style pre-training {#pretraining tag="experimental"}
|
||||
|
||||
|
@ -195,7 +197,7 @@ the existing pages and added some new content:
|
|||
- **Universe:** [Videos](/universe/category/videos) and
|
||||
[Podcasts](/universe/category/podcasts)
|
||||
- **API:** [`EntityRuler`](/api/entityruler)
|
||||
- **API:** [`SentenceSegmenter`](/api/sentencesegmenter)
|
||||
- **API:** [`Sentencizer`](/api/sentencizer)
|
||||
- **API:** [Pipeline functions](/api/pipeline-functions)
|
||||
|
||||
## Backwards incompatibilities {#incompat}
|
||||
|
@ -212,9 +214,8 @@ if all of your models are up to date, you can run the
|
|||
|
||||
- Due to difficulties linking our new
|
||||
[`blis`](https://github.com/explosion/cython-blis) for faster
|
||||
platform-independent matrix multiplication, this nightly release currently
|
||||
**doesn't work on Python 2.7 on Windows**. We expect this to be corrected in
|
||||
the future.
|
||||
platform-independent matrix multiplication, this release currently **doesn't
|
||||
work on Python 2.7 on Windows**. We expect this to be corrected in the future.
|
||||
|
||||
- While the [`Matcher`](/api/matcher) API is fully backwards compatible, its
|
||||
algorithm has changed to fix a number of bugs and performance issues. This
|
||||
|
@ -250,9 +251,14 @@ if all of your models are up to date, you can run the
|
|||
+ data = nlp.tokenizer.to_bytes(exclude=["vocab"])
|
||||
```
|
||||
|
||||
- The .pos value for several common English words has changed, due to
|
||||
corrections to long-standing mistakes in the English tag map (see
|
||||
[issue #593](https://github.com/explosion/spaCy/issues/593) and
|
||||
[issue #3311](https://github.com/explosion/spaCy/issues/3311) for details).
|
||||
|
||||
- For better compatibility with the Universal Dependencies data, the lemmatizer
|
||||
now preserves capitalization, e.g. for proper nouns. See
|
||||
[this issue](https://github.com/explosion/spaCy/issues/3256) for details.
|
||||
[issue #3256](https://github.com/explosion/spaCy/issues/3256) for details.
|
||||
|
||||
- The built-in rule-based sentence boundary detector is now only called
|
||||
`"sentencizer"` – the name `"sbd"` is deprecated.
|
||||
|
|
|
@ -117,6 +117,7 @@
|
|||
{ "code": "sk", "name": "Slovak" },
|
||||
{ "code": "sl", "name": "Slovenian" },
|
||||
{ "code": "sq", "name": "Albanian" },
|
||||
{ "code": "et", "name": "Estonian" },
|
||||
{
|
||||
"code": "th",
|
||||
"name": "Thai",
|
||||
|
|
|
@ -79,7 +79,7 @@
|
|||
{ "text": "Matcher", "url": "/api/matcher" },
|
||||
{ "text": "PhraseMatcher", "url": "/api/phrasematcher" },
|
||||
{ "text": "EntityRuler", "url": "/api/entityruler" },
|
||||
{ "text": "SentenceSegmenter", "url": "/api/sentencesegmenter" },
|
||||
{ "text": "Sentencizer", "url": "/api/sentencizer" },
|
||||
{ "text": "Other Functions", "url": "/api/pipeline-functions" }
|
||||
]
|
||||
},
|
||||
|
|
|
@ -28,8 +28,8 @@
|
|||
},
|
||||
"spacyVersion": "2.1",
|
||||
"binderUrl": "ines/spacy-io-binder",
|
||||
"binderBranch": "nightly",
|
||||
"binderVersion": "2.1.0a9",
|
||||
"binderBranch": "live",
|
||||
"binderVersion": "2.1.3",
|
||||
"sections": [
|
||||
{ "id": "usage", "title": "Usage Documentation", "theme": "blue" },
|
||||
{ "id": "models", "title": "Models Documentation", "theme": "blue" },
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 24 KiB |
|
@ -31,24 +31,21 @@ import spacy
|
|||
nlp = spacy.load("en_core_web_sm")
|
||||
|
||||
# Process whole documents
|
||||
text = (u"When Sebastian Thrun started working on self-driving cars at "
|
||||
u"Google in 2007, few people outside of the company took him "
|
||||
u"seriously. “I can tell you very senior CEOs of major American "
|
||||
u"car companies would shake my hand and turn away because I wasn’t "
|
||||
u"worth talking to,” said Thrun, now the co-founder and CEO of "
|
||||
u"online higher education startup Udacity, in an interview with "
|
||||
u"Recode earlier this week.")
|
||||
text = ("When Sebastian Thrun started working on self-driving cars at "
|
||||
"Google in 2007, few people outside of the company took him "
|
||||
"seriously. “I can tell you very senior CEOs of major American "
|
||||
"car companies would shake my hand and turn away because I wasn’t "
|
||||
"worth talking to,” said Thrun, in an interview with Recode earlier "
|
||||
"this week.")
|
||||
doc = nlp(text)
|
||||
|
||||
# Analyze syntax
|
||||
print("Noun phrases:", [chunk.text for chunk in doc.noun_chunks])
|
||||
print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"])
|
||||
|
||||
# Find named entities, phrases and concepts
|
||||
for entity in doc.ents:
|
||||
print(entity.text, entity.label_)
|
||||
|
||||
# Determine semantic similarities
|
||||
doc1 = nlp(u"my fries were super gross")
|
||||
doc2 = nlp(u"such disgusting fries")
|
||||
similarity = doc1.similarity(doc2)
|
||||
print(doc1.text, doc2.text, similarity)
|
||||
`
|
||||
|
||||
/**
|
||||
|
@ -218,7 +215,7 @@ const Landing = ({ data }) => {
|
|||
<H2>Benchmarks</H2>
|
||||
<p>
|
||||
In 2015, independent researchers from Emory University and Yahoo! Labs
|
||||
showed that spaCy offered the
|
||||
showed that spaCy offered the{' '}
|
||||
<strong>fastest syntactic parser in the world</strong> and that its accuracy
|
||||
was <strong>within 1% of the best</strong> available (
|
||||
<Link to="https://aclweb.org/anthology/P/P15/P15-1038.pdf">
|
||||
|
|
Loading…
Reference in New Issue
Block a user