mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Update quickstart, template and docs
This commit is contained in:
parent
daba316930
commit
a570c304df
|
@ -3,6 +3,7 @@ from enum import Enum
|
|||
from pathlib import Path
|
||||
from wasabi import Printer, diff_strings
|
||||
from thinc.api import Config
|
||||
from pydantic import BaseModel
|
||||
import srsly
|
||||
import re
|
||||
|
||||
|
@ -10,7 +11,9 @@ from .. import util
|
|||
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
|
||||
|
||||
|
||||
TEMPLATE_PATH = Path(__file__).parent / "templates" / "quickstart_training.jinja"
|
||||
TEMPLATE_ROOT = Path(__file__).parent / "templates"
|
||||
TEMPLATE_PATH = TEMPLATE_ROOT / "quickstart_training.jinja"
|
||||
RECOMMENDATIONS_PATH = TEMPLATE_ROOT / "quickstart_training_recommendations.json"
|
||||
|
||||
|
||||
class Optimizations(str, Enum):
|
||||
|
@ -18,6 +21,21 @@ class Optimizations(str, Enum):
|
|||
accuracy = "accuracy"
|
||||
|
||||
|
||||
class RecommendationsTrfItem(BaseModel):
|
||||
name: str
|
||||
size_factor: int
|
||||
|
||||
|
||||
class RecommendationsTrf(BaseModel):
|
||||
efficiency: RecommendationsTrfItem
|
||||
accuracy: RecommendationsTrfItem
|
||||
|
||||
|
||||
class RecommendationSchema(BaseModel):
|
||||
word_vectors: Optional[str] = None
|
||||
transformer: Optional[RecommendationsTrf] = None
|
||||
|
||||
|
||||
@init_cli.command("config")
|
||||
def init_config_cli(
|
||||
# fmt: off
|
||||
|
@ -89,41 +107,49 @@ def init_config(
|
|||
from jinja2 import Template
|
||||
except ImportError:
|
||||
msg.fail("This command requires jinja2", "pip install jinja2", exits=1)
|
||||
recommendations = srsly.read_json(RECOMMENDATIONS_PATH)
|
||||
lang_defaults = util.get_lang_class(lang).Defaults
|
||||
has_letters = lang_defaults.writing_system.get("has_letters", True)
|
||||
has_transformer = False # TODO: check this somehow
|
||||
if has_transformer:
|
||||
require_spacy_transformers(msg)
|
||||
# Filter out duplicates since tok2vec and transformer are added by template
|
||||
pipeline = [pipe for pipe in pipeline if pipe not in ("tok2vec", "transformer")]
|
||||
reco = RecommendationSchema(**recommendations.get(lang, {})).dict()
|
||||
with TEMPLATE_PATH.open("r") as f:
|
||||
template = Template(f.read())
|
||||
variables = {
|
||||
"lang": lang,
|
||||
"pipeline": srsly.json_dumps(pipeline).replace(",", ", "),
|
||||
"components": pipeline,
|
||||
"optimize": optimize,
|
||||
"hardware": "cpu" if cpu else "gpu",
|
||||
"has_transformer": has_transformer,
|
||||
"transformer_data": reco["transformer"],
|
||||
"word_vectors": reco["word_vectors"],
|
||||
"has_letters": has_letters,
|
||||
}
|
||||
base_template = template.render(**variables).strip()
|
||||
base_template = template.render(variables).strip()
|
||||
# Giving up on getting the newlines right in jinja for now
|
||||
base_template = re.sub(r"\n\n\n+", "\n\n", base_template)
|
||||
# Access variables declared in templates
|
||||
template_vars = template.make_module(variables)
|
||||
use_case = {
|
||||
"Language": lang,
|
||||
"Pipeline": ", ".join(pipeline),
|
||||
"Optimize for": optimize,
|
||||
"Hardware": variables["hardware"].upper(),
|
||||
"Transformer": template_vars.transformer.get("name", False),
|
||||
}
|
||||
msg.good("Generated template specific for your use case:")
|
||||
msg.info("Generated template specific for your use case")
|
||||
for label, value in use_case.items():
|
||||
msg.text(f"- {label}: {value}")
|
||||
use_transformer = bool(template_vars.use_transformer)
|
||||
if use_transformer:
|
||||
require_spacy_transformers(msg)
|
||||
with show_validation_error(hint_fill=False):
|
||||
with msg.loading("Auto-filling config..."):
|
||||
config = util.load_config_from_str(base_template)
|
||||
try:
|
||||
nlp, _ = util.load_model_from_config(config, auto_fill=True)
|
||||
except ValueError as e:
|
||||
msg.fail(str(e), exits=1)
|
||||
config = util.load_config_from_str(base_template)
|
||||
try:
|
||||
nlp, _ = util.load_model_from_config(config, auto_fill=True)
|
||||
except ValueError as e:
|
||||
msg.fail(str(e), exits=1)
|
||||
if use_transformer:
|
||||
nlp.config.pop("pretraining", {}) # TODO: solve this better
|
||||
msg.good("Auto-filled config with all values")
|
||||
save_config(nlp.config, output_file, is_stdout=is_stdout)
|
||||
|
||||
|
|
|
@ -1,27 +1,31 @@
|
|||
{# This is a template for training configs used for the quickstart widget in
|
||||
the docs and the init config command. It encodes various best practices and
|
||||
can help generate the best possible configuration, given a user's requirements. #}
|
||||
# This is an auto-generated config for training a model with 'spacy train'
|
||||
{%- set use_transformer = (transformer_data and hardware != "cpu") -%}
|
||||
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
|
||||
[paths]
|
||||
train = ""
|
||||
dev = ""
|
||||
|
||||
[system]
|
||||
use_pytorch_for_gpu_memory = {{ "true" if use_transformer else "false" }}
|
||||
|
||||
[nlp]
|
||||
lang = "{{ lang }}"
|
||||
pipeline = {{ pipeline|safe }}
|
||||
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components %}
|
||||
pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }}
|
||||
tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
{# TRANSFORMER PIPELINE #}
|
||||
{%- if has_transformer -%}
|
||||
{%- if use_transformer -%}
|
||||
[components.transformer]
|
||||
factory = "transformer"
|
||||
|
||||
[components.transformer.model]
|
||||
@architectures = "spacy-transformers.TransformerModel.v1"
|
||||
{#- name = {{ transformer_info["name"] }} #}
|
||||
name = "roberta-base"
|
||||
name = "{{ transformer["name"] }}"
|
||||
tokenizer_config = {"use_fast": true}
|
||||
|
||||
[components.transformer.model.get_spans]
|
||||
|
@ -38,7 +42,7 @@ factory = "tagger"
|
|||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.tagger.model.tok2vec.pooling]
|
||||
|
@ -58,7 +62,7 @@ use_upper = false
|
|||
nO = null
|
||||
|
||||
[components.parser.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.parser.model.tok2vec.pooling]
|
||||
|
@ -78,7 +82,7 @@ use_upper = false
|
|||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy-transformers.TransformerListener.v1"
|
||||
@architectures = "spacy-transformers.Tok2VecListener.v1"
|
||||
grad_factor = 1.0
|
||||
|
||||
[components.ner.model.tok2vec.pooling]
|
||||
|
@ -170,12 +174,14 @@ factory = "{{ pipe }}"
|
|||
{% endfor %}
|
||||
|
||||
[training]
|
||||
vectors = {{ ('"en_vectors_web_lg"' if optimize == "accuracy" and not has_transformer else false)|safe }}
|
||||
|
||||
{% if has_transformer -%}
|
||||
{#- accumulate_gradient = {{ transformer_info["size_factor"] }} #}
|
||||
accumulate_gradient = 3
|
||||
{% if use_transformer or optimize == "efficiency" or not word_vectors -%}
|
||||
vectors = null
|
||||
{% else -%}
|
||||
vectors = "{{ word_vectors }}"
|
||||
{% endif -%}
|
||||
{% if use_transformer -%}
|
||||
accumulate_gradient = {{ transformer["size_factor"] }}
|
||||
{% endif %}
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
|
@ -196,7 +202,7 @@ max_length = {{ 500 if hardware == "gpu" else 0 }}
|
|||
path = ${paths:dev}
|
||||
max_length = 0
|
||||
|
||||
{% if has_transformer %}
|
||||
{% if use_transformer %}
|
||||
[training.batcher]
|
||||
@batchers = "batch_by_padded.v1"
|
||||
discard_oversize = true
|
||||
|
|
13
spacy/cli/templates/quickstart_training_recommendations.json
Normal file
13
spacy/cli/templates/quickstart_training_recommendations.json
Normal file
|
@ -0,0 +1,13 @@
|
|||
{
|
||||
"en": {
|
||||
"word_vectors": "en_vectors_web_lg",
|
||||
"transformer": {
|
||||
"efficiency": { "name": "roberta-base", "size_factor": 3 },
|
||||
"accuracy": { "name": "roberta-base", "size_factor": 3 }
|
||||
}
|
||||
},
|
||||
"de": {
|
||||
"word_vectors": null,
|
||||
"transformer": null
|
||||
}
|
||||
}
|
|
@ -1,12 +1,14 @@
|
|||
import pytest
|
||||
|
||||
from spacy.gold import docs_to_json, biluo_tags_from_offsets
|
||||
from spacy.gold.converters import iob2docs, conll_ner2docs, conllu2docs
|
||||
from spacy.lang.en import English
|
||||
from spacy.schemas import ProjectConfigSchema, validate
|
||||
from spacy.cli.pretrain import make_docs
|
||||
from spacy.cli.init_config import init_config
|
||||
from spacy.cli.init_config import init_config, RECOMMENDATIONS_PATH
|
||||
from spacy.cli.init_config import RecommendationSchema
|
||||
from spacy.cli._util import validate_project_commands, parse_config_overrides
|
||||
from spacy.util import get_lang_class
|
||||
import srsly
|
||||
|
||||
|
||||
def test_cli_converters_conllu2json():
|
||||
|
@ -330,3 +332,10 @@ def test_parse_config_overrides_invalid(args):
|
|||
def test_init_config(lang, pipeline, optimize):
|
||||
# TODO: add more tests and also check for GPU with transformers
|
||||
init_config("-", lang=lang, pipeline=pipeline, optimize=optimize, cpu=True)
|
||||
|
||||
|
||||
def test_model_recommendations():
|
||||
recommendations = srsly.read_json(RECOMMENDATIONS_PATH)
|
||||
for lang, data in recommendations.items():
|
||||
assert get_lang_class(lang)
|
||||
assert RecommendationSchema(**data)
|
||||
|
|
|
@ -101,39 +101,62 @@ files and model directories.
|
|||
|
||||
### init config {#init-config new="3"}
|
||||
|
||||
Initialize and export a [`config.cfg` file](/usage/training#config) for training
|
||||
and update it with all default values, if possible. Config files used for
|
||||
training should always be complete and not contain any hidden defaults or
|
||||
missing values, so this command helps you create your final config. It takes
|
||||
**one** of the following options:
|
||||
|
||||
- `--base`: Base **config** to auto-fill, e.g. created using the
|
||||
[training quickstart](/usage/training#quickstart) widget.
|
||||
- `--lang`: Base **language** code to use for blank config.
|
||||
- `--model`: Base **model** to copy config from.
|
||||
Initialize and save a [`config.cfg` file](/usage/training#config) using the
|
||||
**recommended settings** for your use case. It works just like the
|
||||
[quickstart widget](/usage/training#quickstart), only that it also auto-fills
|
||||
all default values and exports a [training](/usage/training#config)-ready
|
||||
config. The settings you specify will impact the suggested model architectures
|
||||
and pipeline setup, as well as the hyperparameters. You can also adjust and
|
||||
customize those settings in your config file later.
|
||||
|
||||
> ```bash
|
||||
> ### with base config {wrap="true"}
|
||||
> $ python -m spacy init config config.cfg --base base.cfg
|
||||
> ```
|
||||
>
|
||||
> ```bash
|
||||
> ### blank language {wrap="true"}
|
||||
> $ python -m spacy init config config.cfg --lang en --pipeline tagger,parser
|
||||
> ### Example {wrap="true"}
|
||||
> $ python -m spacy init config config.cfg --lang en --pipeline ner,textcat --optimize accuracy
|
||||
> ```
|
||||
|
||||
```bash
|
||||
$ python -m spacy init config [output] [--base] [--lang] [--model] [--pipeline]
|
||||
$ python -m spacy init config [output_file] [--lang] [--pipeline]
|
||||
[--optimize] [--cpu]
|
||||
```
|
||||
|
||||
| Argument | Type | Description |
|
||||
| ------------------ | ---------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `output` | positional | Path to output `.cfg` file. If not set, the config is written to stdout so you can pipe it forward to a file. |
|
||||
| `--base`, `-b` | option | Optional base config file to auto-fill with defaults. |
|
||||
| `--lang`, `-l` | option | Optional language code to use for blank config. If a `--pipeline` is specified, the components will be added in order. |
|
||||
| `--model`, `-m` | option | Optional base model to copy config from. If a `--pipeline` is specified, only those components will be kept, and all other components not in the model will be added. |
|
||||
| `--pipeline`, `-p` | option | Optional comma-separated pipeline of components to add to blank language or model. |
|
||||
| **CREATES** | config | Complete and auto-filled config file for training. |
|
||||
| Argument | Type | Description |
|
||||
| ------------------ | ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `output_file` | positional | Path to output `.cfg` file. If not set, the config is written to stdout so you can pipe it forward to a file. |
|
||||
| `--lang`, `-l` | option | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. |
|
||||
| `--pipeline`, `-p` | option | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include in the model. Defaults to `"tagger,parser,ner"`. |
|
||||
| `--optimize`, `-o` | option | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. |
|
||||
| `--cpu`, `-C` | flag | Whether the model needs to run on CPU. This will impact the choice of architecture, pretrained weights and related hyperparameters. |
|
||||
| `--help`, `-h` | flag | Show help message and available arguments. |
|
||||
| **CREATES** | file | The config file for training. |
|
||||
|
||||
### init fill-config {#init-fill-config new="3"}
|
||||
|
||||
Auto-fill a partial [`config.cfg` file](/usage/training#config) file with **all
|
||||
default values**, e.g. a config generated with the
|
||||
[quickstart widget](/usage/training#quickstart). Config files used for training
|
||||
should always be complete and not contain any hidden defaults or missing values,
|
||||
so this command helps you create your final training config. In order to find
|
||||
the available settings and defaults, all functions referenced in the config will
|
||||
be created, and their signatures are used to find the defaults. If your config
|
||||
contains a problem that can't be resolved automatically, spaCy will show you a
|
||||
validation error with more details.
|
||||
|
||||
> ```bash
|
||||
> ### Example {wrap="true"}
|
||||
> $ python -m spacy init fill-config base.cfg config.cfg
|
||||
> ```
|
||||
|
||||
```bash
|
||||
$ python -m spacy init fill-config [base_path] [output_file] [--diff]
|
||||
```
|
||||
|
||||
| Argument | Type | Description |
|
||||
| -------------- | ---------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
| `base_path` | positional | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). |
|
||||
| `output_file` | positional | Path to output `.cfg` file. If not set, the config is written to stdout so you can pipe it forward to a file. |
|
||||
| `--diff`, `-D` | flag | Print a visual diff highlighting the changes. |
|
||||
| `--help`, `-h` | flag | Show help message and available arguments. |
|
||||
| **CREATES** | file | Complete and auto-filled config file for training. |
|
||||
|
||||
### init model {#init-model new="2"}
|
||||
|
||||
|
|
|
@ -20,8 +20,9 @@ Config files define the training process and model pipeline and can be passed to
|
|||
[`spacy train`](/api/cli#train). They use
|
||||
[Thinc's configuration system](https://thinc.ai/docs/usage-config) under the
|
||||
hood. For details on how to use training configs, see the
|
||||
[usage documentation](/usage/training#config). To get started with a blank
|
||||
config or fill a partial config with all defaults, you can use the
|
||||
[usage documentation](/usage/training#config). To get started with the
|
||||
recommended settings for your use case, check out the
|
||||
[quickstart widget](/usage/training#quickstart) or run the
|
||||
[`init config`](/api/cli#init-config) command.
|
||||
|
||||
> #### What does the @ mean?
|
||||
|
|
|
@ -37,27 +37,37 @@ The recommended way to train your spaCy models is via the
|
|||
single [`config.cfg`](#config) **configuration file** that includes all settings
|
||||
and hyperparameters. You can optionally [overwritten](#config-overrides)
|
||||
settings on the command line, and load in a Python file to register
|
||||
[custom functions](#custom-code) and architectures.
|
||||
[custom functions](#custom-code) and architectures. This quickstart widget helps
|
||||
you generate a starter config with the **recommended settings** for your
|
||||
specific use case. It's also available in spaCy as the
|
||||
[`init config`](/api/cli#init-config) command.
|
||||
|
||||
> #### Instructions
|
||||
> #### Instructions: widget
|
||||
>
|
||||
> 1. Select your requirements and settings.
|
||||
> 2. Use the buttons at the bottom to save the result to your clipboard or a
|
||||
> file `base_config.cfg`.
|
||||
> 3. Run [`init config`](/api/cli#init-config) to create a full training config.
|
||||
> 3. Run [`init fill-config`](/api/cli#init-fill-config) to create a full
|
||||
> config.
|
||||
> 4. Run [`train`](/api/cli#train) with your config and data.
|
||||
>
|
||||
> #### Instructions: CLI
|
||||
>
|
||||
> 1. Run the [`init config`](/api/cli#init-config) command and specify your
|
||||
> requirements and settings as CLI arguments.
|
||||
> 2. Run [`train`](/api/cli#train) with the exported config and data.
|
||||
|
||||
import QuickstartTraining from 'widgets/quickstart-training.js'
|
||||
|
||||
<QuickstartTraining download="base_config.cfg" />
|
||||
|
||||
After you've saved the starter config to a file `base_config.cfg`, you can use
|
||||
the [`init config`](/api/cli#init-config) command to fill in the remaining
|
||||
defaults. Training configs should always be **complete and without hidden
|
||||
defaults**, to keep your experiments reproducible.
|
||||
the [`init fill-config`](/api/cli#init-fill-config) command to fill in the
|
||||
remaining defaults. Training configs should always be **complete and without
|
||||
hidden defaults**, to keep your experiments reproducible.
|
||||
|
||||
```bash
|
||||
$ python -m spacy init config config.cfg --base base_config.cfg
|
||||
$ python -m spacy init fill-config base_config.cfg config.cfg
|
||||
```
|
||||
|
||||
> #### Tip: Debug your data
|
||||
|
@ -70,10 +80,13 @@ $ python -m spacy init config config.cfg --base base_config.cfg
|
|||
> $ python -m spacy debug data config.cfg --verbose
|
||||
> ```
|
||||
|
||||
You can now add your data and run [`train`](/api/cli#train) with your config.
|
||||
See the [`convert`](/api/cli#convert) command for details on how to convert your
|
||||
data to spaCy's binary `.spacy` format. You can either include the data paths in
|
||||
the `[paths]` section of your config, or pass them in via the command line.
|
||||
Instead of exporting your starter config from the quickstart widget and
|
||||
auto-filling it, you can also use the [`init config`](/api/cli#init-config)
|
||||
command and specify your requirement and settings and CLI arguments. You can now
|
||||
add your data and run [`train`](/api/cli#train) with your config. See the
|
||||
[`convert`](/api/cli#convert) command for details on how to convert your data to
|
||||
spaCy's binary `.spacy` format. You can either include the data paths in the
|
||||
`[paths]` section of your config, or pass them in via the command line.
|
||||
|
||||
```bash
|
||||
$ python -m spacy train config.cfg --output ./output --paths.train ./train.spacy --paths.dev ./dev.spacy
|
||||
|
@ -601,7 +614,7 @@ settings in the block will be passed to the function as keyword arguments. Keep
|
|||
in mind that the config shouldn't have any hidden defaults and all arguments on
|
||||
the functions need to be represented in the config. If your function defines
|
||||
**default argument values**, spaCy is able to auto-fill your config when you run
|
||||
[`init config`](/api/cli#init-config).
|
||||
[`init fill-config`](/api/cli#init-fill-config).
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
|
|
|
@ -163,8 +163,9 @@ resolved, the function is created and passed into the model as an argument.
|
|||
Remember that the `config.cfg` used for training should contain **no missing
|
||||
values** and requires all settings to be defined. You don't want any hidden
|
||||
defaults creeping in and changing your results! spaCy will tell you if settings
|
||||
are missing, and you can run [`spacy init config`](/api/cli#init-config) with to
|
||||
automatically fill in all defaults.
|
||||
are missing, and you can run
|
||||
[`spacy init fill-config`](/api/cli#init-fill-config) to automatically fill in
|
||||
all defaults.
|
||||
|
||||
</Infobox>
|
||||
|
||||
|
|
|
@ -152,7 +152,8 @@ The following methods, attributes and commands are new in spaCy v3.0.
|
|||
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
|
||||
| [`Pipe.score`](/api/pipe#score) | Method on trainable pipeline components that returns a dictionary of evaluation scores. |
|
||||
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
|
||||
| [`init config`](/api/cli#init-config) | CLI command for initializing a [training config](/usage/training) file for a blank language or auto-filling a partial config. |
|
||||
| [`init config`](/api/cli#init-config) | CLI command for initializing a [training config](/usage/training) file with the recommended settings. |
|
||||
| [`init fill-config`](/api/cli#init-fill-config) | CLI command for auto-filling a partial config with all defaults and missing values. |
|
||||
| [`debug config`](/api/cli#debug-config) | CLI command for debugging a [training config](/usage/training) file and showing validation errors. |
|
||||
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
|
||||
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# Forked from: https://github.com/jonbretman/jinja-to-js
|
||||
# With additional functionality: in/not in, replace, pprint, round, + for lists,
|
||||
# rendering empty dicts
|
||||
# This script is mostly used to generate the JavaScript function for the
|
||||
# training quicktart widget.
|
||||
import contextlib
|
||||
|
@ -315,7 +317,7 @@ class JinjaToJS(object):
|
|||
if callable(handler):
|
||||
handler(node, **kwargs)
|
||||
else:
|
||||
raise Exception("Unknown node %s" % node)
|
||||
raise Exception(f"Unknown node {node} ({node_name})")
|
||||
|
||||
def _process_extends(self, node, **kwargs):
|
||||
"""
|
||||
|
@ -431,6 +433,13 @@ class JinjaToJS(object):
|
|||
|
||||
self.output.write(node.name)
|
||||
|
||||
def _process_dict(self, node, **kwargs):
|
||||
with self._interpolation():
|
||||
with self._python_bool_wrapper(**kwargs):
|
||||
if node.items:
|
||||
raise ValueError(f"Can't process non-empty dict in epxression: {node}")
|
||||
self.output.write("{}")
|
||||
|
||||
def _process_getattr(self, node, **kwargs):
|
||||
"""
|
||||
Processes a `GetAttr` node. e.g. {{ foo.bar }}
|
||||
|
@ -697,6 +706,27 @@ class JinjaToJS(object):
|
|||
self._process_node(node.node, **new_kwargs)
|
||||
self.output.write(")")
|
||||
|
||||
def _process_filter_replace(self, node, **kwargs):
|
||||
# We're getting a quoted string from Python/Jinja as the pattern to
|
||||
# replace, but to replace all occurrences in JS, we typically need a
|
||||
# regex, which would be annoying to convert. So we're using split/join
|
||||
# instead here.
|
||||
with self._interpolation():
|
||||
with self._python_bool_wrapper(**kwargs) as new_kwargs:
|
||||
self._process_node(node.node, **new_kwargs)
|
||||
self.output.write(".split(")
|
||||
self._process_node(node.args[0], **new_kwargs)
|
||||
self.output.write(").join(")
|
||||
self._process_node(node.args[1], **new_kwargs)
|
||||
self.output.write(")")
|
||||
|
||||
def _process_filter_pprint(self, node, **kwargs):
|
||||
with self._interpolation():
|
||||
with self._python_bool_wrapper(**kwargs) as new_kwargs:
|
||||
self.output.write("JSON.stringify(")
|
||||
self._process_node(node.node, **new_kwargs)
|
||||
self.output.write(")")
|
||||
|
||||
def _process_filter_attr(self, node, **kwargs):
|
||||
with self._interpolation():
|
||||
with self._python_bool_wrapper(**kwargs) as new_kwargs:
|
||||
|
@ -746,7 +776,10 @@ class JinjaToJS(object):
|
|||
with self._python_bool_wrapper(**kwargs) as new_kwargs:
|
||||
self.output.write("Math.round((")
|
||||
self._process_node(node.node, **new_kwargs)
|
||||
self.output.write("+ Number.EPSILON) * 100) / 100")
|
||||
self.output.write("+ Number.EPSILON) * 10**")
|
||||
self._process_node(node.args[0], **new_kwargs)
|
||||
self.output.write(") / 10**")
|
||||
self._process_node(node.args[0], **new_kwargs)
|
||||
|
||||
def _process_filter_last(self, node, **kwargs):
|
||||
with self._interpolation():
|
||||
|
@ -1029,7 +1062,18 @@ class JinjaToJS(object):
|
|||
self.output.write(")")
|
||||
|
||||
def _process_add(self, node, **kwargs):
|
||||
self._process_math(node, math_operator=" + ", **kwargs)
|
||||
# Handle + operator for lists, which behaves differently in JS. Currently
|
||||
# only works if we have an explicit list node on either side (in which
|
||||
# case we assume both are lists).
|
||||
if isinstance(node.left, nodes.List) or isinstance(node.right, nodes.List):
|
||||
with self._interpolation():
|
||||
with self._python_bool_wrapper(**kwargs) as new_kwargs:
|
||||
self._process_node(node.left, **new_kwargs)
|
||||
self.output.write(".concat(")
|
||||
self._process_node(node.right, **new_kwargs)
|
||||
self.output.write(")")
|
||||
else:
|
||||
self._process_math(node, math_operator=" + ", **kwargs)
|
||||
|
||||
def _process_sub(self, node, **kwargs):
|
||||
self._process_math(node, math_operator=" - ", **kwargs)
|
||||
|
@ -1192,16 +1236,22 @@ def main(
|
|||
# fmt: off
|
||||
template_path: Path = typer.Argument(..., exists=True, dir_okay=False, help="Path to .jinja file"),
|
||||
output: Path = typer.Argument(None, help="Path to output module (stdout if unset)"),
|
||||
data_path: Path = typer.Option(None, "--data", help="Optional JSON file with additional data to be included as DATA")
|
||||
# fmt: on
|
||||
):
|
||||
"""Convert a jinja2 template to a JavaScript module."""
|
||||
data = "{}"
|
||||
if data_path is not None:
|
||||
with data_path.open("r", encoding="utf8") as f:
|
||||
data = json.dumps(json.loads(f.read())) # dump and load for compactness
|
||||
tpl_file = template_path.parts[-1]
|
||||
compiler = JinjaToJS(template_path.parent, tpl_file, js_module_format="es6")
|
||||
header = f"// This file was auto-generated by {__file__} based on {tpl_file}"
|
||||
data_str = f"export const DATA = {data}"
|
||||
result = compiler.get_output()
|
||||
if output is not None:
|
||||
with output.open("w") as f:
|
||||
f.write(f"{header}\n{result}")
|
||||
f.write(f"{header}\n{result}\n{data_str}")
|
||||
print(f"Updated {output.parts[-1]}")
|
||||
else:
|
||||
print(result)
|
||||
|
|
|
@ -1 +1 @@
|
|||
python jinja_to_js.py ../../spacy/cli/templates/quickstart_training.jinja ../src/widgets/quickstart-training-generator.js
|
||||
python jinja_to_js.py ../../spacy/cli/templates/quickstart_training.jinja ../src/widgets/quickstart-training-generator.js --data ../../spacy/cli/templates/quickstart_training_recommendations.json
|
||||
|
|
|
@ -125,9 +125,9 @@
|
|||
display: block
|
||||
|
||||
.small
|
||||
font-size: var(--font-size-sm)
|
||||
font-size: var(--font-size-code)
|
||||
line-height: 1.65
|
||||
white-space: pre
|
||||
white-space: pre-wrap
|
||||
max-height: 400px
|
||||
overflow-y: auto
|
||||
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -2,14 +2,17 @@ import React, { useState } from 'react'
|
|||
import { StaticQuery, graphql } from 'gatsby'
|
||||
import highlightCode from 'gatsby-remark-prismjs/highlight-code.js'
|
||||
|
||||
import { Quickstart, QS } from '../components/quickstart'
|
||||
import generator from './quickstart-training-generator'
|
||||
import { Quickstart } from '../components/quickstart'
|
||||
import generator, { DATA as GENERATOR_DATA } from './quickstart-training-generator'
|
||||
import { isString, htmlToReact } from '../components/util'
|
||||
|
||||
const DEFAULT_LANG = 'en'
|
||||
const DEFAULT_HARDWARE = 'gpu'
|
||||
const DEFAULT_OPT = 'efficiency'
|
||||
const COMPONENTS = ['tagger', 'parser', 'ner', 'textcat']
|
||||
const COMMENT = `# This is an auto-generated partial config. To use it with 'spacy train'
|
||||
# you can run spacy init fill-config to auto-fill all default settings:
|
||||
# python -m spacy init fill-config ./base_config.cfg ./config.cfg`
|
||||
|
||||
const DATA = [
|
||||
{
|
||||
|
@ -61,14 +64,17 @@ export default function QuickstartTraining({ id, title, download = 'config.cfg'
|
|||
hardware: setHardware,
|
||||
optimize: setOptimize,
|
||||
}
|
||||
const reco = GENERATOR_DATA[lang] || {}
|
||||
const content = generator({
|
||||
lang,
|
||||
pipeline: stringify(components),
|
||||
components,
|
||||
optimize,
|
||||
hardware,
|
||||
transformer_data: reco.transformer,
|
||||
word_vectors: reco.word_vectors,
|
||||
})
|
||||
const rawContent = content.trim().replace(/\n\n\n+/g, '\n\n')
|
||||
const rawStr = content.trim().replace(/\n\n\n+/g, '\n\n')
|
||||
const rawContent = `${COMMENT}\n${rawStr}`
|
||||
const displayContent = highlightCode('ini', rawContent)
|
||||
.split('\n')
|
||||
.map(line => (line.startsWith('#') ? `<span class="token comment">${line}</span>` : line))
|
||||
|
|
Loading…
Reference in New Issue
Block a user