diff --git a/spacy/cli/debug_data.py b/spacy/cli/debug_data.py index afedb933e..290131c76 100644 --- a/spacy/cli/debug_data.py +++ b/spacy/cli/debug_data.py @@ -9,11 +9,14 @@ import srsly from wasabi import Printer, MESSAGES from ..gold import GoldCorpus, read_json_object +from ..syntax import nonproj from ..util import load_model, get_lang_class -# Minimum number of expected occurences of label in data to train new label +# Minimum number of expected occurrences of NER label in data to train new label NEW_LABEL_THRESHOLD = 50 +# Minimum number of expected occurrences of dependency labels +DEP_LABEL_THRESHOLD = 20 # Minimum number of expected examples to train a blank model BLANK_MODEL_MIN_THRESHOLD = 100 BLANK_MODEL_THRESHOLD = 2000 @@ -68,12 +71,10 @@ def debug_data( nlp = lang_cls() msg.divider("Data format validation") - # Load the data in one – might take a while but okay in this case - train_data = _load_file(train_path, msg) - dev_data = _load_file(dev_path, msg) # Validate data format using the JSON schema # TODO: update once the new format is ready + # TODO: move validation to GoldCorpus in order to be able to load from dir train_data_errors = [] # TODO: validate_json dev_data_errors = [] # TODO: validate_json if not train_data_errors: @@ -88,18 +89,34 @@ def debug_data( sys.exit(1) # Create the gold corpus to be able to better analyze data - with msg.loading("Analyzing corpus..."): - train_data = read_json_object(train_data) - dev_data = read_json_object(dev_data) - corpus = GoldCorpus(train_data, dev_data) - train_docs = list(corpus.train_docs(nlp)) - dev_docs = list(corpus.dev_docs(nlp)) + loading_train_error_message = "" + loading_dev_error_message = "" + with msg.loading("Loading corpus..."): + corpus = GoldCorpus(train_path, dev_path) + try: + train_docs = list(corpus.train_docs(nlp)) + train_docs_unpreprocessed = list(corpus.train_docs_without_preprocessing(nlp)) + except ValueError as e: + loading_train_error_message = "Training data cannot be loaded: {}".format(str(e)) + try: + dev_docs = list(corpus.dev_docs(nlp)) + except ValueError as e: + loading_dev_error_message = "Development data cannot be loaded: {}".format(str(e)) + if loading_train_error_message or loading_dev_error_message: + if loading_train_error_message: + msg.fail(loading_train_error_message) + if loading_dev_error_message: + msg.fail(loading_dev_error_message) + sys.exit(1) msg.good("Corpus is loadable") # Create all gold data here to avoid iterating over the train_docs constantly - gold_data = _compile_gold(train_docs, pipeline) - train_texts = gold_data["texts"] - dev_texts = set([doc.text for doc, gold in dev_docs]) + gold_train_data = _compile_gold(train_docs, pipeline) + gold_train_unpreprocessed_data = _compile_gold(train_docs_unpreprocessed, pipeline) + gold_dev_data = _compile_gold(dev_docs, pipeline) + + train_texts = gold_train_data["texts"] + dev_texts = gold_dev_data["texts"] msg.divider("Training stats") msg.text("Training pipeline: {}".format(", ".join(pipeline))) @@ -133,13 +150,21 @@ def debug_data( ) msg.divider("Vocab & Vectors") - n_words = gold_data["n_words"] + n_words = gold_train_data["n_words"] msg.info( "{} total {} in the data ({} unique)".format( - n_words, "word" if n_words == 1 else "words", len(gold_data["words"]) + n_words, "word" if n_words == 1 else "words", len(gold_train_data["words"]) ) ) - most_common_words = gold_data["words"].most_common(10) + if gold_train_data["n_misaligned_words"] > 0: + msg.warn( + "{} misaligned tokens in the training data".format(gold_train_data["n_misaligned_words"]) + ) + if gold_dev_data["n_misaligned_words"] > 0: + msg.warn( + "{} misaligned tokens in the dev data".format(gold_dev_data["n_misaligned_words"]) + ) + most_common_words = gold_train_data["words"].most_common(10) msg.text( "10 most common words: {}".format( _format_labels(most_common_words, counts=True) @@ -159,8 +184,8 @@ def debug_data( if "ner" in pipeline: # Get all unique NER labels present in the data - labels = set(label for label in gold_data["ner"] if label not in ("O", "-")) - label_counts = gold_data["ner"] + labels = set(label for label in gold_train_data["ner"] if label not in ("O", "-")) + label_counts = gold_train_data["ner"] model_labels = _get_labels_from_model(nlp, "ner") new_labels = [l for l in labels if l not in model_labels] existing_labels = [l for l in labels if l in model_labels] @@ -196,8 +221,8 @@ def debug_data( "Existing: {}".format(_format_labels(existing_labels)), show=verbose ) - if gold_data["ws_ents"]: - msg.fail("{} invalid whitespace entity spans".format(gold_data["ws_ents"])) + if gold_train_data["ws_ents"]: + msg.fail("{} invalid whitespace entity spans".format(gold_train_data["ws_ents"])) has_ws_ents_error = True for label in new_labels: @@ -227,7 +252,7 @@ def debug_data( if has_low_data_warning: msg.text( "To train a new entity type, your data should include at " - "least {} insteances of the new label".format(NEW_LABEL_THRESHOLD), + "least {} instances of the new label".format(NEW_LABEL_THRESHOLD), show=verbose, ) if has_no_neg_warning: @@ -245,7 +270,7 @@ def debug_data( if "textcat" in pipeline: msg.divider("Text Classification") - labels = [label for label in gold_data["textcat"]] + labels = [label for label in gold_train_data["textcat"]] model_labels = _get_labels_from_model(nlp, "textcat") new_labels = [l for l in labels if l not in model_labels] existing_labels = [l for l in labels if l in model_labels] @@ -256,7 +281,7 @@ def debug_data( ) if new_labels: labels_with_counts = _format_labels( - gold_data["textcat"].most_common(), counts=True + gold_train_data["textcat"].most_common(), counts=True ) msg.text("New: {}".format(labels_with_counts), show=verbose) if existing_labels: @@ -266,7 +291,7 @@ def debug_data( if "tagger" in pipeline: msg.divider("Part-of-speech Tagging") - labels = [label for label in gold_data["tags"]] + labels = [label for label in gold_train_data["tags"]] tag_map = nlp.Defaults.tag_map msg.info( "{} {} in data ({} {} in tag map)".format( @@ -277,7 +302,7 @@ def debug_data( ) ) labels_with_counts = _format_labels( - gold_data["tags"].most_common(), counts=True + gold_train_data["tags"].most_common(), counts=True ) msg.text(labels_with_counts, show=verbose) non_tagmap = [l for l in labels if l not in tag_map] @@ -292,17 +317,132 @@ def debug_data( if "parser" in pipeline: msg.divider("Dependency Parsing") - labels = [label for label in gold_data["deps"]] + + # profile sentence length msg.info( - "{} {} in data".format( - len(labels), "label" if len(labels) == 1 else "labels" + "Found {} sentence{} with an average length of {:.1f} words.".format( + gold_train_data["n_sents"], + "s" if len(train_docs) > 1 else "", + gold_train_data["n_words"] / gold_train_data["n_sents"] ) ) + + # profile labels + labels_train = [label for label in gold_train_data["deps"]] + labels_train_unpreprocessed = [label for label in gold_train_unpreprocessed_data["deps"]] + labels_dev = [label for label in gold_dev_data["deps"]] + + if gold_train_unpreprocessed_data["n_nonproj"] > 0: + msg.info( + "Found {} nonprojective train sentence{}".format( + gold_train_unpreprocessed_data["n_nonproj"], + "s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else "" + ) + ) + if gold_dev_data["n_nonproj"] > 0: + msg.info( + "Found {} nonprojective dev sentence{}".format( + gold_dev_data["n_nonproj"], + "s" if gold_dev_data["n_nonproj"] > 1 else "" + ) + ) + + msg.info( + "{} {} in train data".format( + len(labels_train_unpreprocessed), "label" if len(labels_train) == 1 else "labels" + ) + ) + msg.info( + "{} {} in projectivized train data".format( + len(labels_train), "label" if len(labels_train) == 1 else "labels" + ) + ) + labels_with_counts = _format_labels( - gold_data["deps"].most_common(), counts=True + gold_train_unpreprocessed_data["deps"].most_common(), counts=True ) msg.text(labels_with_counts, show=verbose) + # rare labels in train + for label in gold_train_unpreprocessed_data["deps"]: + if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD: + msg.warn( + "Low number of examples for label '{}' ({})".format( + label, gold_train_unpreprocessed_data["deps"][label] + ) + ) + has_low_data_warning = True + + + # rare labels in projectivized train + rare_projectivized_labels = [] + for label in gold_train_data["deps"]: + if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label: + rare_projectivized_labels.append("{}: {}".format(label, str(gold_train_data["deps"][label]))) + + if len(rare_projectivized_labels) > 0: + msg.warn( + "Low number of examples for {} label{} in the " + "projectivized dependency trees used for training. You may " + "want to projectivize labels such as punct before " + "training in order to improve parser performance.".format( + len(rare_projectivized_labels), + "s" if len(rare_projectivized_labels) > 1 else "") + ) + msg.warn( + "Projectivized labels with low numbers of examples: " + "{}".format("\n".join(rare_projectivized_labels)), + show=verbose + ) + has_low_data_warning = True + + # labels only in train + if set(labels_train) - set(labels_dev): + msg.warn( + "The following labels were found only in the train data: " + "{}".format(", ".join(set(labels_train) - set(labels_dev))), + show=verbose + ) + + # labels only in dev + if set(labels_dev) - set(labels_train): + msg.warn( + "The following labels were found only in the dev data: " + + ", ".join(set(labels_dev) - set(labels_train)), + show=verbose + ) + + if has_low_data_warning: + msg.text( + "To train a parser, your data should include at " + "least {} instances of each label.".format(DEP_LABEL_THRESHOLD), + show=verbose, + ) + + # multiple root labels + if len(gold_train_unpreprocessed_data["roots"]) > 1: + msg.warn( + "Multiple root labels ({}) ".format(", ".join(gold_train_unpreprocessed_data["roots"])) + + "found in training data. spaCy's parser uses a single root " + "label ROOT so this distinction will not be available." + ) + + # these should not happen, but just in case + if gold_train_data["n_nonproj"] > 0: + msg.fail( + "Found {} nonprojective projectivized train sentence{}".format( + gold_train_data["n_nonproj"], + "s" if gold_train_data["n_nonproj"] > 1 else "" + ) + ) + if gold_train_data["n_cycles"] > 0: + msg.fail( + "Found {} projectivized train sentence{} with cycles".format( + gold_train_data["n_cycles"], + "s" if gold_train_data["n_cycles"] > 1 else "" + ) + ) + msg.divider("Summary") good_counts = msg.counts[MESSAGES.GOOD] warn_counts = msg.counts[MESSAGES.WARN] @@ -350,16 +490,25 @@ def _compile_gold(train_docs, pipeline): "tags": Counter(), "deps": Counter(), "words": Counter(), + "roots": Counter(), "ws_ents": 0, "n_words": 0, + "n_misaligned_words": 0, + "n_sents": 0, + "n_nonproj": 0, + "n_cycles": 0, "texts": set(), } for doc, gold in train_docs: - data["words"].update(gold.words) - data["n_words"] += len(gold.words) + valid_words = [x for x in gold.words if x is not None] + data["words"].update(valid_words) + data["n_words"] += len(valid_words) + data["n_misaligned_words"] += len(gold.words) - len(valid_words) data["texts"].add(doc.text) if "ner" in pipeline: for i, label in enumerate(gold.ner): + if label is None: + continue if label.startswith(("B-", "U-", "L-")) and doc[i].is_space: # "Illegal" whitespace entity data["ws_ents"] += 1 @@ -371,9 +520,17 @@ def _compile_gold(train_docs, pipeline): if "textcat" in pipeline: data["cats"].update(gold.cats) if "tagger" in pipeline: - data["tags"].update(gold.tags) + data["tags"].update([x for x in gold.tags if x is not None]) if "parser" in pipeline: - data["deps"].update(gold.labels) + data["deps"].update([x for x in gold.labels if x is not None]) + for i, (dep, head) in enumerate(zip(gold.labels, gold.heads)): + if head == i: + data["roots"].update([dep]) + data["n_sents"] += 1 + if nonproj.is_nonproj_tree(gold.heads): + data["n_nonproj"] += 1 + if nonproj.contains_cycle(gold.heads): + data["n_cycles"] += 1 return data diff --git a/spacy/gold.pyx b/spacy/gold.pyx index 64c2d9772..f6ec8d3fa 100644 --- a/spacy/gold.pyx +++ b/spacy/gold.pyx @@ -216,6 +216,10 @@ class GoldCorpus(object): make_projective=True) yield from gold_docs + def train_docs_without_preprocessing(self, nlp, gold_preproc=False): + gold_docs = self.iter_gold_docs(nlp, self.train_tuples, gold_preproc=gold_preproc) + yield from gold_docs + def dev_docs(self, nlp, gold_preproc=False): gold_docs = self.iter_gold_docs(nlp, self.dev_tuples, gold_preproc=gold_preproc) yield from gold_docs