mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-22 18:12:00 +03:00
remove references to 'single_label'
This commit is contained in:
parent
efea793248
commit
a5c407f11e
|
@ -317,7 +317,8 @@ class SpanCategorizer(TrainablePipe):
|
|||
scorer: Optional[Callable] = spancat_score,
|
||||
) -> None:
|
||||
"""Initialize the multi-label or multi-class span categorizer.
|
||||
The 'single_label' argument configures whether the component
|
||||
|
||||
argument configures whether the component
|
||||
should only produce one label per span (multi-class) or if it
|
||||
can produce multiple labels per span (multi-label). In the
|
||||
multi-label case the classification layer is expected to be
|
||||
|
@ -325,6 +326,9 @@ class SpanCategorizer(TrainablePipe):
|
|||
|
||||
vocab (Vocab): The shared vocabulary.
|
||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||
For multi-class classification (single label per span) we recommend
|
||||
using a Softmax classifier as a the final layer, while for multi-label
|
||||
classification (multiple possible labels per span) we recommend Logistic.
|
||||
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||
Spans are returned as a ragged array with two integer columns, for the
|
||||
start and end positions.
|
||||
|
@ -340,14 +344,13 @@ class SpanCategorizer(TrainablePipe):
|
|||
positive. Defaults to 0.5. Spans with a positive prediction will be saved
|
||||
on the Doc.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider
|
||||
positive per span. Defaults to None, indicating no limit. This is
|
||||
unused when single_label is True.
|
||||
positive per span. Defaults to None, indicating no limit.
|
||||
negative_weight (float): Multiplier for the loss terms.
|
||||
Can be used to downweight the negative samples if there are too many
|
||||
when single_label is True. Otherwise its unused.
|
||||
when add_negative_label is True. Otherwise its unused.
|
||||
allow_overlap (bool): If True the data is assumed to contain overlapping spans.
|
||||
Otherwise it produces non-overlapping spans greedily prioritizing
|
||||
higher assigned label scores. Only used when single_label is True.
|
||||
higher assigned label scores. Only used when max_positive is 1.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||
spans allowed.
|
||||
|
|
Loading…
Reference in New Issue
Block a user