mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	remove references to 'single_label'
This commit is contained in:
		
							parent
							
								
									efea793248
								
							
						
					
					
						commit
						a5c407f11e
					
				|  | @ -317,7 +317,8 @@ class SpanCategorizer(TrainablePipe): | |||
|         scorer: Optional[Callable] = spancat_score, | ||||
|     ) -> None: | ||||
|         """Initialize the multi-label or multi-class span categorizer. | ||||
|         The 'single_label' argument configures whether the component | ||||
| 
 | ||||
|         argument configures whether the component | ||||
|         should only produce one label per span (multi-class) or if it | ||||
|         can produce multiple labels per span (multi-label). In the | ||||
|         multi-label case the classification layer is expected to be | ||||
|  | @ -325,6 +326,9 @@ class SpanCategorizer(TrainablePipe): | |||
| 
 | ||||
|         vocab (Vocab): The shared vocabulary. | ||||
|         model (thinc.api.Model): The Thinc Model powering the pipeline component. | ||||
|             For multi-class classification (single label per span) we recommend | ||||
|             using a Softmax classifier as a the final layer, while for multi-label | ||||
|             classification (multiple possible labels per span) we recommend Logistic. | ||||
|         suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans. | ||||
|             Spans are returned as a ragged array with two integer columns, for the | ||||
|             start and end positions. | ||||
|  | @ -340,14 +344,13 @@ class SpanCategorizer(TrainablePipe): | |||
|             positive. Defaults to 0.5. Spans with a positive prediction will be saved | ||||
|             on the Doc. | ||||
|         max_positive (Optional[int]): Maximum number of labels to consider | ||||
|             positive per span. Defaults to None, indicating no limit. This is | ||||
|             unused when single_label is True. | ||||
|             positive per span. Defaults to None, indicating no limit. | ||||
|         negative_weight (float): Multiplier for the loss terms. | ||||
|             Can be used to downweight the negative samples if there are too many | ||||
|             when single_label is True. Otherwise its unused. | ||||
|             when add_negative_label is True. Otherwise its unused. | ||||
|         allow_overlap (bool): If True the data is assumed to contain overlapping spans. | ||||
|             Otherwise it produces non-overlapping spans greedily prioritizing | ||||
|             higher assigned label scores. Only used when single_label is True. | ||||
|             higher assigned label scores. Only used when max_positive is 1. | ||||
|         scorer (Optional[Callable]): The scoring method. Defaults to | ||||
|             Scorer.score_spans for the Doc.spans[spans_key] with overlapping | ||||
|             spans allowed. | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user