mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-24 07:30:52 +03:00
Merge branch 'develop' into nightly.spacy.io
This commit is contained in:
commit
a77713947d
|
@ -18,11 +18,12 @@ cdef class Lexeme:
|
||||||
cdef readonly attr_t orth
|
cdef readonly attr_t orth
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
cdef inline Lexeme from_ptr(LexemeC* lex, Vocab vocab, int vector_length):
|
cdef inline Lexeme from_ptr(LexemeC* lex, Vocab vocab):
|
||||||
cdef Lexeme self = Lexeme.__new__(Lexeme, vocab, lex.orth)
|
cdef Lexeme self = Lexeme.__new__(Lexeme, vocab, lex.orth)
|
||||||
self.c = lex
|
self.c = lex
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.orth = lex.orth
|
self.orth = lex.orth
|
||||||
|
return self
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) nogil:
|
cdef inline void set_struct_attr(LexemeC* lex, attr_id_t name, attr_t value) nogil:
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# cython: infer_types=True, profile=True, binding=True
|
# cython: infer_types=True, profile=True
|
||||||
import srsly
|
import srsly
|
||||||
|
|
||||||
from ..tokens.doc cimport Doc
|
from ..tokens.doc cimport Doc
|
||||||
|
|
|
@ -43,7 +43,7 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
||||||
scores=["tag_acc"],
|
scores=["tag_acc"],
|
||||||
default_score_weights={"tag_acc": 1.0},
|
default_score_weights={"tag_acc": 1.0},
|
||||||
)
|
)
|
||||||
def make_tagger(nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]]):
|
def make_tagger(nlp: Language, name: str, model: Model):
|
||||||
"""Construct a part-of-speech tagger component.
|
"""Construct a part-of-speech tagger component.
|
||||||
|
|
||||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||||
|
|
|
@ -172,7 +172,7 @@ class TextCategorizer(Pipe):
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
|
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
|
||||||
"""Modify a batch of documents, using pre-computed scores.
|
"""Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
docs (Iterable[Doc]): The documents to modify.
|
docs (Iterable[Doc]): The documents to modify.
|
||||||
scores: The scores to set, produced by TextCategorizer.predict.
|
scores: The scores to set, produced by TextCategorizer.predict.
|
||||||
|
|
|
@ -2,6 +2,7 @@ import pytest
|
||||||
import numpy
|
import numpy
|
||||||
from spacy.tokens import Doc, Span
|
from spacy.tokens import Doc, Span
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
|
from spacy.lexeme import Lexeme
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
|
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
|
||||||
|
|
||||||
|
@ -389,3 +390,11 @@ def test_doc_lang(en_vocab):
|
||||||
assert doc.lang == en_vocab.strings["en"]
|
assert doc.lang == en_vocab.strings["en"]
|
||||||
assert doc[0].lang_ == "en"
|
assert doc[0].lang_ == "en"
|
||||||
assert doc[0].lang == en_vocab.strings["en"]
|
assert doc[0].lang == en_vocab.strings["en"]
|
||||||
|
|
||||||
|
|
||||||
|
def test_token_lexeme(en_vocab):
|
||||||
|
"""Test that tokens expose their lexeme."""
|
||||||
|
token = Doc(en_vocab, words=["Hello", "world"])[0]
|
||||||
|
assert isinstance(token.lex, Lexeme)
|
||||||
|
assert token.lex.text == token.text
|
||||||
|
assert en_vocab[token.orth] == token.lex
|
||||||
|
|
|
@ -226,6 +226,11 @@ cdef class Token:
|
||||||
cdef hash_t key = self.vocab.morphology.add(features)
|
cdef hash_t key = self.vocab.morphology.add(features)
|
||||||
self.c.morph = key
|
self.c.morph = key
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lex(self):
|
||||||
|
"""RETURNS (Lexeme): The underlying lexeme."""
|
||||||
|
return self.vocab[self.c.lex.orth]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def lex_id(self):
|
def lex_id(self):
|
||||||
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
||||||
|
|
|
@ -162,7 +162,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## DependencyParser.predict {#predict tag="method"}
|
## DependencyParser.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -178,7 +179,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## DependencyParser.set_annotations {#set_annotations tag="method"}
|
## DependencyParser.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
|
|
@ -162,9 +162,9 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## EntityLinker.predict {#predict tag="method"}
|
## EntityLinker.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them. Returns
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
the KB IDs for each entity in each doc, including `NIL` if there is no
|
modifying them. Returns the KB IDs for each entity in each doc, including `NIL`
|
||||||
prediction.
|
if there is no prediction.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
|
|
@ -151,7 +151,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## EntityRecognizer.predict {#predict tag="method"}
|
## EntityRecognizer.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -167,7 +168,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## EntityRecognizer.set_annotations {#set_annotations tag="method"}
|
## EntityRecognizer.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
|
|
@ -142,7 +142,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## Morphologizer.predict {#predict tag="method"}
|
## Morphologizer.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -158,7 +159,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## Morphologizer.set_annotations {#set_annotations tag="method"}
|
## Morphologizer.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -175,8 +176,9 @@ Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
## Morphologizer.update {#update tag="method"}
|
## Morphologizer.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/morphologizer#predict) and
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/morphologizer#predict) and
|
||||||
[`get_loss`](/api/morphologizer#get_loss).
|
[`get_loss`](/api/morphologizer#get_loss).
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
|
|
|
@ -8,7 +8,18 @@ This class is a base class and **not instantiated directly**. Trainable pipeline
|
||||||
components like the [`EntityRecognizer`](/api/entityrecognizer) or
|
components like the [`EntityRecognizer`](/api/entityrecognizer) or
|
||||||
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
|
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
|
||||||
interface that components should follow to function as trainable components in a
|
interface that components should follow to function as trainable components in a
|
||||||
spaCy pipeline.
|
spaCy pipeline. See the docs on
|
||||||
|
[writing trainable components](/usage/processing-pipelines#trainable) for how to
|
||||||
|
use the `Pipe` base class to implement custom components.
|
||||||
|
|
||||||
|
> #### Why is Pipe implemented in Cython?
|
||||||
|
>
|
||||||
|
> The `Pipe` class is implemented in a `.pyx` module, the extension used by
|
||||||
|
> [Cython](/api/cython). This is needed so that **other** Cython classes, like
|
||||||
|
> the [`EntityRecognizer`](/api/entityrecognizer) can inherit from it. But it
|
||||||
|
> doesn't mean you have to implement trainable components in Cython – pure
|
||||||
|
> Python components like the [`TextCategorizer`](/api/textcategorizer) can also
|
||||||
|
> inherit from `Pipe`.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/pipe.pyx
|
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/pipe.pyx
|
||||||
|
@ -115,7 +126,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## Pipe.predict {#predict tag="method"}
|
## Pipe.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
<Infobox variant="danger">
|
<Infobox variant="danger">
|
||||||
|
|
||||||
|
@ -137,7 +149,7 @@ This method needs to be overwritten with your own custom `predict` method.
|
||||||
|
|
||||||
## Pipe.set_annotations {#set_annotations tag="method"}
|
## Pipe.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
<Infobox variant="danger">
|
<Infobox variant="danger">
|
||||||
|
|
||||||
|
@ -161,8 +173,8 @@ method.
|
||||||
|
|
||||||
## Pipe.update {#update tag="method"}
|
## Pipe.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/pipe#predict).
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
|
||||||
<Infobox variant="danger">
|
<Infobox variant="danger">
|
||||||
|
|
||||||
|
|
|
@ -136,7 +136,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## SentenceRecognizer.predict {#predict tag="method"}
|
## SentenceRecognizer.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -152,7 +153,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## SentenceRecognizer.set_annotations {#set_annotations tag="method"}
|
## SentenceRecognizer.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -169,8 +170,9 @@ Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
## SentenceRecognizer.update {#update tag="method"}
|
## SentenceRecognizer.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/sentencerecognizer#predict) and
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/sentencerecognizer#predict) and
|
||||||
[`get_loss`](/api/sentencerecognizer#get_loss).
|
[`get_loss`](/api/sentencerecognizer#get_loss).
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
|
|
|
@ -134,7 +134,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## Tagger.predict {#predict tag="method"}
|
## Tagger.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -150,7 +151,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## Tagger.set_annotations {#set_annotations tag="method"}
|
## Tagger.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -167,8 +168,9 @@ Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
## Tagger.update {#update tag="method"}
|
## Tagger.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/tagger#predict) and
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/tagger#predict) and
|
||||||
[`get_loss`](/api/tagger#get_loss).
|
[`get_loss`](/api/tagger#get_loss).
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
|
|
|
@ -142,7 +142,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## TextCategorizer.predict {#predict tag="method"}
|
## TextCategorizer.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -158,7 +159,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## TextCategorizer.set_annotations {#set_annotations tag="method"}
|
## TextCategorizer.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -175,8 +176,9 @@ Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
## TextCategorizer.update {#update tag="method"}
|
## TextCategorizer.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/textcategorizer#predict) and
|
||||||
[`get_loss`](/api/textcategorizer#get_loss).
|
[`get_loss`](/api/textcategorizer#get_loss).
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
|
|
|
@ -145,7 +145,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## Tok2Vec.predict {#predict tag="method"}
|
## Tok2Vec.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -161,7 +162,7 @@ Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
## Tok2Vec.set_annotations {#set_annotations tag="method"}
|
## Tok2Vec.set_annotations {#set_annotations tag="method"}
|
||||||
|
|
||||||
Modify a batch of documents, using pre-computed scores.
|
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
@ -178,8 +179,9 @@ Modify a batch of documents, using pre-computed scores.
|
||||||
|
|
||||||
## Tok2Vec.update {#update tag="method"}
|
## Tok2Vec.update {#update tag="method"}
|
||||||
|
|
||||||
Learn from a batch of documents and gold-standard information, updating the
|
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||||
pipe's model. Delegates to [`predict`](/api/tok2vec#predict).
|
predictions and gold-standard annotations, and update the component's model.
|
||||||
|
Delegates to [`predict`](/api/tok2vec#predict).
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
|
|
@ -393,9 +393,10 @@ The L2 norm of the token's vector representation.
|
||||||
## Attributes {#attributes}
|
## Attributes {#attributes}
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| -------------------------------------------- | --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| -------------------------------------------- | ----------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
| `doc` | `Doc` | The parent document. |
|
| `doc` | `Doc` | The parent document. |
|
||||||
| `sent` <Tag variant="new">2.0.12</Tag> | `Span` | The sentence span that this token is a part of. |
|
| `lex` <Tag variant="new">3</Tag> | [`Lexeme`](/api/lexeme) | The underlying lexeme. |
|
||||||
|
| `sent` <Tag variant="new">2.0.12</Tag> | [`Span`](/api/span) | The sentence span that this token is a part of. |
|
||||||
| `text` | str | Verbatim text content. |
|
| `text` | str | Verbatim text content. |
|
||||||
| `text_with_ws` | str | Text content, with trailing space character if present. |
|
| `text_with_ws` | str | Text content, with trailing space character if present. |
|
||||||
| `whitespace_` | str | Trailing space character if present. |
|
| `whitespace_` | str | Trailing space character if present. |
|
||||||
|
|
|
@ -179,7 +179,8 @@ Initialize the pipe for training, using data examples if available. Returns an
|
||||||
|
|
||||||
## Transformer.predict {#predict tag="method"}
|
## Transformer.predict {#predict tag="method"}
|
||||||
|
|
||||||
Apply the pipeline's model to a batch of docs, without modifying them.
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||||
|
modifying them.
|
||||||
|
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
|
|
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 88 KiB |
|
@ -14,8 +14,6 @@ of the pipeline. The `Language` object coordinates these components. It takes
|
||||||
raw text and sends it through the pipeline, returning an **annotated document**.
|
raw text and sends it through the pipeline, returning an **annotated document**.
|
||||||
It also orchestrates training and serialization.
|
It also orchestrates training and serialization.
|
||||||
|
|
||||||
<!-- TODO: update graphic -->
|
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
### Container objects {#architecture-containers}
|
### Container objects {#architecture-containers}
|
||||||
|
@ -85,4 +83,4 @@ operates on a `Doc` and gives you access to the matched tokens **in context**.
|
||||||
| [`MorphAnalysis`](/api/morphanalysis) | A morphological analysis. |
|
| [`MorphAnalysis`](/api/morphanalysis) | A morphological analysis. |
|
||||||
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. |
|
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. |
|
||||||
| [`Scorer`](/api/scorer) | Compute evaluation scores. |
|
| [`Scorer`](/api/scorer) | Compute evaluation scores. |
|
||||||
| [`Corpus`](/api/corpis) | Class for managing annotated corpora for training and evaluation data. |
|
| [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. |
|
||||||
|
|
|
@ -5,6 +5,7 @@ menu:
|
||||||
- ['Processing Text', 'processing']
|
- ['Processing Text', 'processing']
|
||||||
- ['How Pipelines Work', 'pipelines']
|
- ['How Pipelines Work', 'pipelines']
|
||||||
- ['Custom Components', 'custom-components']
|
- ['Custom Components', 'custom-components']
|
||||||
|
# - ['Trainable Components', 'trainable-components']
|
||||||
- ['Extension Attributes', 'custom-components-attributes']
|
- ['Extension Attributes', 'custom-components-attributes']
|
||||||
- ['Plugins & Wrappers', 'plugins']
|
- ['Plugins & Wrappers', 'plugins']
|
||||||
---
|
---
|
||||||
|
@ -885,10 +886,14 @@ available, falls back to looking up the regular factory name.
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
|
||||||
<!-- TODO:
|
<!-- TODO:
|
||||||
|
## Trainable components {#trainable-components new="3"}
|
||||||
|
|
||||||
### Trainable components {#trainable new="3"}
|
spaCy's [`Pipe`](/api/pipe) class helps you implement your own trainable
|
||||||
|
components that have their own model instance, make predictions over `Doc`
|
||||||
|
objects and can be updated using [`spacy train`](/api/cli#train). This lets you
|
||||||
|
plug fully custom machine learning components into your pipeline.
|
||||||
|
|
||||||
-->
|
--->
|
||||||
|
|
||||||
## Extension attributes {#custom-components-attributes new="2"}
|
## Extension attributes {#custom-components-attributes new="2"}
|
||||||
|
|
||||||
|
|
|
@ -6,11 +6,11 @@ menu:
|
||||||
- ['Features', 'features']
|
- ['Features', 'features']
|
||||||
- ['Linguistic Annotations', 'annotations']
|
- ['Linguistic Annotations', 'annotations']
|
||||||
- ['Pipelines', 'pipelines']
|
- ['Pipelines', 'pipelines']
|
||||||
|
- ['Architecture', 'architecture']
|
||||||
- ['Vocab', 'vocab']
|
- ['Vocab', 'vocab']
|
||||||
- ['Serialization', 'serialization']
|
- ['Serialization', 'serialization']
|
||||||
- ['Training', 'training']
|
- ['Training', 'training']
|
||||||
- ['Language Data', 'language-data']
|
- ['Language Data', 'language-data']
|
||||||
- ['Architecture', 'architecture']
|
|
||||||
- ['Community & FAQ', 'community-faq']
|
- ['Community & FAQ', 'community-faq']
|
||||||
---
|
---
|
||||||
|
|
||||||
|
@ -71,12 +71,11 @@ systems, or to pre-process text for **deep learning**.
|
||||||
- [Named entities](#annotations-ner)
|
- [Named entities](#annotations-ner)
|
||||||
- [Word vectors and similarity](#vectors-similarity)
|
- [Word vectors and similarity](#vectors-similarity)
|
||||||
- [Pipelines](#pipelines)
|
- [Pipelines](#pipelines)
|
||||||
|
- [Library architecture](#architecture)
|
||||||
- [Vocab, hashes and lexemes](#vocab)
|
- [Vocab, hashes and lexemes](#vocab)
|
||||||
- [Serialization](#serialization)
|
- [Serialization](#serialization)
|
||||||
- [Training](#training)
|
- [Training](#training)
|
||||||
- [Language data](#language-data)
|
- [Language data](#language-data)
|
||||||
- [Lightning tour](#lightning-tour)
|
|
||||||
- [Architecture](#architecture)
|
|
||||||
- [Community & FAQ](#community)
|
- [Community & FAQ](#community)
|
||||||
|
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
@ -266,6 +265,12 @@ guide on [language processing pipelines](/usage/processing-pipelines).
|
||||||
|
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
|
||||||
|
## Architecture {#architecture}
|
||||||
|
|
||||||
|
import Architecture101 from 'usage/101/\_architecture.md'
|
||||||
|
|
||||||
|
<Architecture101 />
|
||||||
|
|
||||||
## Vocab, hashes and lexemes {#vocab}
|
## Vocab, hashes and lexemes {#vocab}
|
||||||
|
|
||||||
Whenever possible, spaCy tries to store data in a vocabulary, the
|
Whenever possible, spaCy tries to store data in a vocabulary, the
|
||||||
|
@ -411,12 +416,6 @@ import LanguageData101 from 'usage/101/\_language-data.md'
|
||||||
|
|
||||||
<LanguageData101 />
|
<LanguageData101 />
|
||||||
|
|
||||||
## Architecture {#architecture}
|
|
||||||
|
|
||||||
import Architecture101 from 'usage/101/\_architecture.md'
|
|
||||||
|
|
||||||
<Architecture101 />
|
|
||||||
|
|
||||||
## Community & FAQ {#community-faq}
|
## Community & FAQ {#community-faq}
|
||||||
|
|
||||||
We're very happy to see the spaCy community grow and include a mix of people
|
We're very happy to see the spaCy community grow and include a mix of people
|
||||||
|
|
Loading…
Reference in New Issue
Block a user