mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Merge branch 'develop' into nightly.spacy.io
This commit is contained in:
		
						commit
						a7b820aea4
					
				|  | @ -525,12 +525,11 @@ A neural network model where token vectors are calculated using a CNN. The | |||
| vectors are mean pooled and used as features in a feed-forward network. This | ||||
| architecture is usually less accurate than the ensemble, but runs faster. | ||||
| 
 | ||||
| | Name                        | Type                                       | Description                                                                                                                                              | | ||||
| | --------------------------- | ------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `exclusive_classes`         | bool                                       | Whether or not categories are mutually exclusive.                                                                                                        | | ||||
| | `tok2vec`                   | [`Model`](https://thinc.ai/docs/api-model) | The [`tok2vec`](#tok2vec) layer of the model.                                                                                                            | | ||||
| | `nO`                        | int                                        | Output dimension, determined by the number of different labels. If not set, the the [`TextCategorizer`](/api/textcategorizer) component will set it when | | ||||
| | `begin_training` is called. | | ||||
| | Name                | Type                                       | Description                                                                                                                                                                          | | ||||
| | ------------------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ||||
| | `exclusive_classes` | bool                                       | Whether or not categories are mutually exclusive.                                                                                                                                    | | ||||
| | `tok2vec`           | [`Model`](https://thinc.ai/docs/api-model) | The [`tok2vec`](#tok2vec) layer of the model.                                                                                                                                        | | ||||
| | `nO`                | int                                        | Output dimension, determined by the number of different labels. If not set, the the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. | | ||||
| 
 | ||||
| ### spacy.TextCatBOW.v1 {#TextCatBOW} | ||||
| 
 | ||||
|  | @ -548,13 +547,12 @@ architecture is usually less accurate than the ensemble, but runs faster. | |||
| An ngram "bag-of-words" model. This architecture should run much faster than the | ||||
| others, but may not be as accurate, especially if texts are short. | ||||
| 
 | ||||
| | Name                        | Type  | Description                                                                                                                                              | | ||||
| | --------------------------- | ----- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `exclusive_classes`         | bool  | Whether or not categories are mutually exclusive.                                                                                                        | | ||||
| | `ngram_size`                | int   | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features.              | | ||||
| | `no_output_layer`           | float | Whether or not to add an output layer to the model (`Softmax` activation if `exclusive_classes=True`, else `Logistic`.                                   | | ||||
| | `nO`                        | int   | Output dimension, determined by the number of different labels. If not set, the the [`TextCategorizer`](/api/textcategorizer) component will set it when | | ||||
| | `begin_training` is called. | | ||||
| | Name                | Type  | Description                                                                                                                                                                          | | ||||
| | ------------------- | ----- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ||||
| | `exclusive_classes` | bool  | Whether or not categories are mutually exclusive.                                                                                                                                    | | ||||
| | `ngram_size`        | int   | Determines the maximum length of the n-grams in the BOW model. For instance, `ngram_size=3`would give unigram, trigram and bigram features.                                          | | ||||
| | `no_output_layer`   | float | Whether or not to add an output layer to the model (`Softmax` activation if `exclusive_classes=True`, else `Logistic`.                                                               | | ||||
| | `nO`                | int   | Output dimension, determined by the number of different labels. If not set, the the [`TextCategorizer`](/api/textcategorizer) component will set it when `begin_training` is called. | | ||||
| 
 | ||||
| <!-- TODO: | ||||
| ### spacy.TextCatLowData.v1 {#TextCatLowData} | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user