mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Update llm docs to clarify task-specific factories (#13082)
* fix typo * add examples to specify custom model for task-specific factory
This commit is contained in:
parent
48248c62b6
commit
a804b83a4b
|
@ -16,14 +16,6 @@ prototyping** and **prompting**, and turning unstructured responses into
|
|||
|
||||
## Config and implementation {id="config"}
|
||||
|
||||
An LLM component is implemented through the `LLMWrapper` class. It is accessible
|
||||
through a generic `llm`
|
||||
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
||||
`llm_rel`, `llm_textcat`, `llm_sentiment` and `llm_summarization`.
|
||||
|
||||
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
@ -32,13 +24,26 @@ as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
|||
> llm = nlp.add_pipe("llm", config=config)
|
||||
>
|
||||
> # Construction via add_pipe with a task-specific factory and default GPT3.5 model
|
||||
> llm = nlp.add_pipe("llm-ner")
|
||||
> llm = nlp.add_pipe("llm_ner")
|
||||
>
|
||||
> # Construction via add_pipe with a task-specific factory and custom model
|
||||
> llm = nlp.add_pipe("llm_ner", config={"model": {"@llm_models": "spacy.Dolly.v1", "name": "dolly-v2-12b"}})
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_llm.pipeline import LLMWrapper
|
||||
> llm = LLMWrapper(vocab=nlp.vocab, task=task, model=model, cache=cache, save_io=True)
|
||||
> ```
|
||||
|
||||
An LLM component is implemented through the `LLMWrapper` class. It is accessible
|
||||
through a generic `llm`
|
||||
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
||||
`llm_rel`, `llm_textcat`, `llm_sentiment` and `llm_summarization`. For these
|
||||
factories, the GPT-3-5 model from OpenAI is used by default, but this can be
|
||||
customized.
|
||||
|
||||
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
|
Loading…
Reference in New Issue
Block a user