mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
precomputable_biaffine: avoid concatenation (#10911)
The `forward` of `precomputable_biaffine` performs matrix multiplication and then `vstack`s the result with padding. This creates a temporary array used for the output of matrix concatenation. This change avoids the temporary by pre-allocating an array that is large enough for the output of matrix multiplication plus padding and fills the array in-place. This gave me a small speedup (a bit over 100 WPS) on de_core_news_lg on M1 Max (after changing thinc-apple-ops to support in-place gemm as BLIS does).
This commit is contained in:
parent
97e8a5041b
commit
a83a501195
|
@ -22,9 +22,11 @@ def forward(model, X, is_train):
|
|||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.get_param("W")
|
||||
Yf = model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True)
|
||||
# Preallocate array for layer output, including padding.
|
||||
Yf = model.ops.alloc2f(X.shape[0] + 1, nF * nO * nP, zeros=False)
|
||||
model.ops.gemm(X, W.reshape((nF * nO * nP, nI)), trans2=True, out=Yf[1:])
|
||||
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
|
||||
Yf = model.ops.xp.vstack((model.get_param("pad"), Yf))
|
||||
Yf[0] = model.get_param("pad")
|
||||
|
||||
def backward(dY_ids):
|
||||
# This backprop is particularly tricky, because we get back a different
|
||||
|
|
Loading…
Reference in New Issue
Block a user