mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
More formatting changes
This commit is contained in:
parent
c22f075509
commit
a892821c51
6
fabfile.py
vendored
6
fabfile.py
vendored
|
@ -1,6 +1,6 @@
|
||||||
import contextlib
|
import contextlib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from fabric.api import local, lcd, env, settings, prefix
|
from fabric.api import local, lcd
|
||||||
from os import path, environ
|
from os import path, environ
|
||||||
import shutil
|
import shutil
|
||||||
import sys
|
import sys
|
||||||
|
@ -79,9 +79,7 @@ def pex():
|
||||||
with virtualenv(VENV_DIR) as venv_local:
|
with virtualenv(VENV_DIR) as venv_local:
|
||||||
with lcd(path.dirname(__file__)):
|
with lcd(path.dirname(__file__)):
|
||||||
sha = local("git rev-parse --short HEAD", capture=True)
|
sha = local("git rev-parse --short HEAD", capture=True)
|
||||||
venv_local(
|
venv_local(f"pex dist/*.whl -e spacy -o dist/spacy-{sha}.pex", direct=True)
|
||||||
"pex dist/*.whl -e spacy -o dist/spacy-%s.pex" % sha, direct=True
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def clean():
|
def clean():
|
||||||
|
|
|
@ -22,7 +22,7 @@ if __name__ == "__main__":
|
||||||
if len(sys.argv) == 1:
|
if len(sys.argv) == 1:
|
||||||
msg.info("Available commands", ", ".join(commands), exits=1)
|
msg.info("Available commands", ", ".join(commands), exits=1)
|
||||||
command = sys.argv.pop(1)
|
command = sys.argv.pop(1)
|
||||||
sys.argv[0] = "spacy %s" % command
|
sys.argv[0] = f"spacy {command}"
|
||||||
if command in commands:
|
if command in commands:
|
||||||
plac.call(commands[command], sys.argv[1:])
|
plac.call(commands[command], sys.argv[1:])
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -296,7 +296,7 @@ def link_vectors_to_models(vocab):
|
||||||
# This is a hack to avoid the problem in #3853. Maybe we should
|
# This is a hack to avoid the problem in #3853. Maybe we should
|
||||||
# print a warning as well?
|
# print a warning as well?
|
||||||
old_name = vectors.name
|
old_name = vectors.name
|
||||||
new_name = vectors.name + "_%d" % data.shape[0]
|
new_name = f"{vectors.name}_{data.shape[0]}"
|
||||||
user_warning(Warnings.W019.format(old=old_name, new=new_name))
|
user_warning(Warnings.W019.format(old=old_name, new=new_name))
|
||||||
vectors.name = new_name
|
vectors.name = new_name
|
||||||
key = (ops.device, vectors.name)
|
key = (ops.device, vectors.name)
|
||||||
|
|
|
@ -47,20 +47,20 @@ def evaluate(
|
||||||
end = timer()
|
end = timer()
|
||||||
nwords = sum(len(ex.doc) for ex in dev_dataset)
|
nwords = sum(len(ex.doc) for ex in dev_dataset)
|
||||||
results = {
|
results = {
|
||||||
"Time": "%.2f s" % (end - begin),
|
"Time": f"{end - begin:.2f} s",
|
||||||
"Words": nwords,
|
"Words": nwords,
|
||||||
"Words/s": "%.0f" % (nwords / (end - begin)),
|
"Words/s": f"{nwords / (end - begin):.0f}",
|
||||||
"TOK": "%.2f" % scorer.token_acc,
|
"TOK": f"{scorer.token_acc:.2f}",
|
||||||
"POS": "%.2f" % scorer.tags_acc,
|
"POS": f"{scorer.tags_acc:.2f}",
|
||||||
"UAS": "%.2f" % scorer.uas,
|
"UAS": f"{scorer.uas:.2f}",
|
||||||
"LAS": "%.2f" % scorer.las,
|
"LAS": f"{scorer.las:.2f}",
|
||||||
"NER P": "%.2f" % scorer.ents_p,
|
"NER P": f"{scorer.ents_p:.2f}",
|
||||||
"NER R": "%.2f" % scorer.ents_r,
|
"NER R": f"{scorer.ents_r:.2f}",
|
||||||
"NER F": "%.2f" % scorer.ents_f,
|
"NER F": f"{scorer.ents_f:.2f}",
|
||||||
"Textcat": "%.2f" % scorer.textcat_score,
|
"Textcat": f"{scorer.textcat_score:.2f}",
|
||||||
"Sent P": "%.2f" % scorer.sent_p,
|
"Sent P": f"{scorer.sent_p:.2f}",
|
||||||
"Sent R": "%.2f" % scorer.sent_r,
|
"Sent R": f"{scorer.sent_r:.2f}",
|
||||||
"Sent F": "%.2f" % scorer.sent_f,
|
"Sent F": f"{scorer.sent_f:.2f}",
|
||||||
}
|
}
|
||||||
msg.table(results, title="Results")
|
msg.table(results, title="Results")
|
||||||
|
|
||||||
|
|
|
@ -186,7 +186,7 @@ def add_vectors(nlp, vectors_loc, prune_vectors, name=None):
|
||||||
if vectors_data is not None:
|
if vectors_data is not None:
|
||||||
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
||||||
if name is None:
|
if name is None:
|
||||||
nlp.vocab.vectors.name = "%s_model.vectors" % nlp.meta["lang"]
|
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_model.vectors"
|
||||||
else:
|
else:
|
||||||
nlp.vocab.vectors.name = name
|
nlp.vocab.vectors.name = name
|
||||||
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
|
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
|
||||||
|
@ -232,7 +232,7 @@ def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
|
||||||
word = literal_eval(key)
|
word = literal_eval(key)
|
||||||
except SyntaxError:
|
except SyntaxError:
|
||||||
# Take odd strings literally.
|
# Take odd strings literally.
|
||||||
word = literal_eval("'%s'" % key)
|
word = literal_eval(f"'{key}'")
|
||||||
smooth_count = counts.smoother(int(freq))
|
smooth_count = counts.smoother(int(freq))
|
||||||
probs[word] = math.log(smooth_count) - log_total
|
probs[word] = math.log(smooth_count) - log_total
|
||||||
oov_prob = math.log(counts.smoother(0)) - log_total
|
oov_prob = math.log(counts.smoother(0)) - log_total
|
||||||
|
|
|
@ -83,7 +83,7 @@ def generate_meta(model_path, existing_meta, msg):
|
||||||
("lang", "Model language", meta.get("lang", "en")),
|
("lang", "Model language", meta.get("lang", "en")),
|
||||||
("name", "Model name", meta.get("name", "model")),
|
("name", "Model name", meta.get("name", "model")),
|
||||||
("version", "Model version", meta.get("version", "0.0.0")),
|
("version", "Model version", meta.get("version", "0.0.0")),
|
||||||
("spacy_version", "Required spaCy version", ">=%s,<3.0.0" % about.__version__),
|
("spacy_version", "Required spaCy version", f">={about.__version__},<3.0.0"),
|
||||||
("description", "Model description", meta.get("description", False)),
|
("description", "Model description", meta.get("description", False)),
|
||||||
("author", "Author", meta.get("author", False)),
|
("author", "Author", meta.get("author", False)),
|
||||||
("email", "Author email", meta.get("email", False)),
|
("email", "Author email", meta.get("email", False)),
|
||||||
|
|
|
@ -179,14 +179,12 @@ def pretrain(
|
||||||
else:
|
else:
|
||||||
if not epoch_start:
|
if not epoch_start:
|
||||||
msg.fail(
|
msg.fail(
|
||||||
"You have to use the '--epoch-start' argument when using a renamed weight file for "
|
"You have to use the --epoch-start argument when using a renamed weight file for --init-tok2vec",
|
||||||
"'--init-tok2vec'",
|
|
||||||
exits=True,
|
exits=True,
|
||||||
)
|
)
|
||||||
elif epoch_start < 0:
|
elif epoch_start < 0:
|
||||||
msg.fail(
|
msg.fail(
|
||||||
"The argument '--epoch-start' has to be greater or equal to 0. '%d' is invalid"
|
f"The argument --epoch-start has to be greater or equal to 0. {epoch_start} is invalid",
|
||||||
% epoch_start,
|
|
||||||
exits=True,
|
exits=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -195,16 +193,14 @@ def pretrain(
|
||||||
|
|
||||||
optimizer = create_default_optimizer(model.ops)
|
optimizer = create_default_optimizer(model.ops)
|
||||||
tracker = ProgressTracker(frequency=10000)
|
tracker = ProgressTracker(frequency=10000)
|
||||||
msg.divider("Pre-training tok2vec layer - starting at epoch %d" % epoch_start)
|
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_start}")
|
||||||
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
||||||
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
||||||
|
|
||||||
def _save_model(epoch, is_temp=False):
|
def _save_model(epoch, is_temp=False):
|
||||||
is_temp_str = ".temp" if is_temp else ""
|
is_temp_str = ".temp" if is_temp else ""
|
||||||
with model.use_params(optimizer.averages):
|
with model.use_params(optimizer.averages):
|
||||||
with (output_dir / ("model%d%s.bin" % (epoch, is_temp_str))).open(
|
with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
|
||||||
"wb"
|
|
||||||
) as file_:
|
|
||||||
file_.write(model.tok2vec.to_bytes())
|
file_.write(model.tok2vec.to_bytes())
|
||||||
log = {
|
log = {
|
||||||
"nr_word": tracker.nr_word,
|
"nr_word": tracker.nr_word,
|
||||||
|
|
|
@ -375,7 +375,7 @@ def train(
|
||||||
words_seen += sum(len(doc) for doc in docs)
|
words_seen += sum(len(doc) for doc in docs)
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
util.set_env_log(False)
|
util.set_env_log(False)
|
||||||
epoch_model_path = output_path / ("model%d" % i)
|
epoch_model_path = output_path / f"model{i}"
|
||||||
nlp.to_disk(epoch_model_path)
|
nlp.to_disk(epoch_model_path)
|
||||||
nlp_loaded = util.load_model_from_path(epoch_model_path)
|
nlp_loaded = util.load_model_from_path(epoch_model_path)
|
||||||
for beam_width in eval_beam_widths:
|
for beam_width in eval_beam_widths:
|
||||||
|
@ -414,13 +414,13 @@ def train(
|
||||||
scorer = nlp_loaded.evaluate(dev_dataset, verbose=verbose)
|
scorer = nlp_loaded.evaluate(dev_dataset, verbose=verbose)
|
||||||
end_time = timer()
|
end_time = timer()
|
||||||
cpu_wps = nwords / (end_time - start_time)
|
cpu_wps = nwords / (end_time - start_time)
|
||||||
acc_loc = output_path / ("model%d" % i) / "accuracy.json"
|
acc_loc = output_path / f"model{i}" / "accuracy.json"
|
||||||
srsly.write_json(acc_loc, scorer.scores)
|
srsly.write_json(acc_loc, scorer.scores)
|
||||||
|
|
||||||
# Update model meta.json
|
# Update model meta.json
|
||||||
meta["lang"] = nlp.lang
|
meta["lang"] = nlp.lang
|
||||||
meta["pipeline"] = nlp.pipe_names
|
meta["pipeline"] = nlp.pipe_names
|
||||||
meta["spacy_version"] = ">=%s" % about.__version__
|
meta["spacy_version"] = f">={about.__version__}"
|
||||||
if beam_width == 1:
|
if beam_width == 1:
|
||||||
meta["speed"] = {
|
meta["speed"] = {
|
||||||
"nwords": nwords,
|
"nwords": nwords,
|
||||||
|
@ -443,10 +443,10 @@ def train(
|
||||||
"keys": nlp.vocab.vectors.n_keys,
|
"keys": nlp.vocab.vectors.n_keys,
|
||||||
"name": nlp.vocab.vectors.name,
|
"name": nlp.vocab.vectors.name,
|
||||||
}
|
}
|
||||||
meta.setdefault("name", "model%d" % i)
|
meta.setdefault("name", f"model{i}")
|
||||||
meta.setdefault("version", version)
|
meta.setdefault("version", version)
|
||||||
meta["labels"] = nlp.meta["labels"]
|
meta["labels"] = nlp.meta["labels"]
|
||||||
meta_loc = output_path / ("model%d" % i) / "meta.json"
|
meta_loc = output_path / f"model{i}" / "meta.json"
|
||||||
srsly.write_json(meta_loc, meta)
|
srsly.write_json(meta_loc, meta)
|
||||||
util.set_env_log(verbose)
|
util.set_env_log(verbose)
|
||||||
|
|
||||||
|
|
|
@ -615,7 +615,7 @@ def _consume_ent(tags):
|
||||||
else:
|
else:
|
||||||
start = "B-" + label
|
start = "B-" + label
|
||||||
end = "L-" + label
|
end = "L-" + label
|
||||||
middle = ["I-%s" % label for _ in range(1, length - 1)]
|
middle = [f"I-{label}" for _ in range(1, length - 1)]
|
||||||
return [start] + middle + [end]
|
return [start] + middle + [end]
|
||||||
|
|
||||||
|
|
||||||
|
@ -1204,12 +1204,12 @@ def biluo_tags_from_offsets(doc, entities, missing="O"):
|
||||||
# Only interested if the tokenization is correct
|
# Only interested if the tokenization is correct
|
||||||
if start_token is not None and end_token is not None:
|
if start_token is not None and end_token is not None:
|
||||||
if start_token == end_token:
|
if start_token == end_token:
|
||||||
biluo[start_token] = "U-%s" % label
|
biluo[start_token] = f"U-{label}"
|
||||||
else:
|
else:
|
||||||
biluo[start_token] = "B-%s" % label
|
biluo[start_token] = f"B-{label}"
|
||||||
for i in range(start_token+1, end_token):
|
for i in range(start_token+1, end_token):
|
||||||
biluo[i] = "I-%s" % label
|
biluo[i] = f"I-{label}"
|
||||||
biluo[end_token] = "L-%s" % label
|
biluo[end_token] = f"L-{label}"
|
||||||
# Now distinguish the O cases from ones where we miss the tokenization
|
# Now distinguish the O cases from ones where we miss the tokenization
|
||||||
entity_chars = set()
|
entity_chars = set()
|
||||||
for start_char, end_char, label in entities:
|
for start_char, end_char, label in entities:
|
||||||
|
|
|
@ -442,7 +442,7 @@ cdef class KnowledgeBase:
|
||||||
cdef class Writer:
|
cdef class Writer:
|
||||||
def __init__(self, object loc):
|
def __init__(self, object loc):
|
||||||
if path.exists(loc):
|
if path.exists(loc):
|
||||||
assert not path.isdir(loc), "%s is directory." % loc
|
assert not path.isdir(loc), f"{loc} is directory"
|
||||||
if isinstance(loc, Path):
|
if isinstance(loc, Path):
|
||||||
loc = bytes(loc)
|
loc = bytes(loc)
|
||||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||||
|
|
|
@ -30,9 +30,9 @@ _exc["12m."] = [{ORTH: "12"}, {ORTH: "m.", LEMMA: "p.m."}]
|
||||||
|
|
||||||
for h in range(1, 12 + 1):
|
for h in range(1, 12 + 1):
|
||||||
for period in ["a.m.", "am"]:
|
for period in ["a.m.", "am"]:
|
||||||
_exc["%d%s" % (h, period)] = [{ORTH: "%d" % h}, {ORTH: period, LEMMA: "a.m."}]
|
_exc[f"{h}{period}"] = [{ORTH: f"{h}"}, {ORTH: period, LEMMA: "a.m."}]
|
||||||
for period in ["p.m.", "pm"]:
|
for period in ["p.m.", "pm"]:
|
||||||
_exc["%d%s" % (h, period)] = [{ORTH: "%d" % h}, {ORTH: period, LEMMA: "p.m."}]
|
_exc[f"{h}{period}"] = [{ORTH: f"{h}"}, {ORTH: period, LEMMA: "p.m."}]
|
||||||
|
|
||||||
|
|
||||||
TOKENIZER_EXCEPTIONS = _exc
|
TOKENIZER_EXCEPTIONS = _exc
|
||||||
|
|
|
@ -559,7 +559,7 @@ for exc_data in [
|
||||||
# Dates
|
# Dates
|
||||||
for h in range(1, 31 + 1):
|
for h in range(1, 31 + 1):
|
||||||
for period in ["."]:
|
for period in ["."]:
|
||||||
_exc["%d%s" % (h, period)] = [{ORTH: "%d." % h}]
|
_exc[f"{h}{period}"] = [{ORTH: f"{h}."}]
|
||||||
|
|
||||||
_custom_base_exc = {"i.": [{ORTH: "i", LEMMA: "i", NORM: "i"}, {ORTH: ".", TAG: PUNCT}]}
|
_custom_base_exc = {"i.": [{ORTH: "i", LEMMA: "i", NORM: "i"}, {ORTH: ".", TAG: PUNCT}]}
|
||||||
_exc.update(_custom_base_exc)
|
_exc.update(_custom_base_exc)
|
||||||
|
|
|
@ -131,14 +131,14 @@ _exc.update(_other_exc)
|
||||||
for h in range(1, 12 + 1):
|
for h in range(1, 12 + 1):
|
||||||
|
|
||||||
for period in ["π.μ.", "πμ"]:
|
for period in ["π.μ.", "πμ"]:
|
||||||
_exc["%d%s" % (h, period)] = [
|
_exc[f"{h}{period}"] = [
|
||||||
{ORTH: "%d" % h},
|
{ORTH: f"{h}"},
|
||||||
{ORTH: period, LEMMA: "π.μ.", NORM: "π.μ."},
|
{ORTH: period, LEMMA: "π.μ.", NORM: "π.μ."},
|
||||||
]
|
]
|
||||||
|
|
||||||
for period in ["μ.μ.", "μμ"]:
|
for period in ["μ.μ.", "μμ"]:
|
||||||
_exc["%d%s" % (h, period)] = [
|
_exc[f"{h}{period}"] = [
|
||||||
{ORTH: "%d" % h},
|
{ORTH: f"{h}"},
|
||||||
{ORTH: period, LEMMA: "μ.μ.", NORM: "μ.μ."},
|
{ORTH: period, LEMMA: "μ.μ.", NORM: "μ.μ."},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
|
@ -328,13 +328,13 @@ for exc_data in [
|
||||||
|
|
||||||
for h in range(1, 12 + 1):
|
for h in range(1, 12 + 1):
|
||||||
for period in ["a.m.", "am"]:
|
for period in ["a.m.", "am"]:
|
||||||
_exc["%d%s" % (h, period)] = [
|
_exc[f"{h}{period}"] = [
|
||||||
{ORTH: "%d" % h},
|
{ORTH: f"{h}"},
|
||||||
{ORTH: period, LEMMA: "a.m.", NORM: "a.m."},
|
{ORTH: period, LEMMA: "a.m.", NORM: "a.m."},
|
||||||
]
|
]
|
||||||
for period in ["p.m.", "pm"]:
|
for period in ["p.m.", "pm"]:
|
||||||
_exc["%d%s" % (h, period)] = [
|
_exc[f"{h}{period}"] = [
|
||||||
{ORTH: "%d" % h},
|
{ORTH: f"{h}"},
|
||||||
{ORTH: period, LEMMA: "p.m.", NORM: "p.m."},
|
{ORTH: period, LEMMA: "p.m.", NORM: "p.m."},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
|
@ -28,9 +28,9 @@ _exc["12m."] = [{ORTH: "12"}, {ORTH: "m.", LEMMA: "p.m."}]
|
||||||
|
|
||||||
for h in range(1, 12 + 1):
|
for h in range(1, 12 + 1):
|
||||||
for period in ["a.m.", "am"]:
|
for period in ["a.m.", "am"]:
|
||||||
_exc["%d%s" % (h, period)] = [{ORTH: "%d" % h}, {ORTH: period, LEMMA: "a.m."}]
|
_exc[f"{h}{period}"] = [{ORTH: f"{h}"}, {ORTH: period, LEMMA: "a.m."}]
|
||||||
for period in ["p.m.", "pm"]:
|
for period in ["p.m.", "pm"]:
|
||||||
_exc["%d%s" % (h, period)] = [{ORTH: "%d" % h}, {ORTH: period, LEMMA: "p.m."}]
|
_exc[f"{h}{period}"] = [{ORTH: f"{h}"}, {ORTH: period, LEMMA: "p.m."}]
|
||||||
|
|
||||||
|
|
||||||
for orth in [
|
for orth in [
|
||||||
|
|
|
@ -85,7 +85,7 @@ for verb, verb_lemma in [("est", "être")]:
|
||||||
|
|
||||||
for pre, pre_lemma in [("qu'", "que"), ("n'", "ne")]:
|
for pre, pre_lemma in [("qu'", "que"), ("n'", "ne")]:
|
||||||
for orth in [pre, pre.title()]:
|
for orth in [pre, pre.title()]:
|
||||||
_exc["%sest-ce" % orth] = [
|
_exc[f"{orth}est-ce"] = [
|
||||||
{LEMMA: pre_lemma, ORTH: orth, TAG: "ADV"},
|
{LEMMA: pre_lemma, ORTH: orth, TAG: "ADV"},
|
||||||
{LEMMA: "être", ORTH: "est", TAG: "VERB"},
|
{LEMMA: "être", ORTH: "est", TAG: "VERB"},
|
||||||
{LEMMA: "ce", ORTH: "-ce"},
|
{LEMMA: "ce", ORTH: "-ce"},
|
||||||
|
|
|
@ -1015,7 +1015,7 @@ def _fix_pretrained_vectors_name(nlp):
|
||||||
elif not nlp.vocab.vectors.size:
|
elif not nlp.vocab.vectors.size:
|
||||||
nlp.vocab.vectors.name = None
|
nlp.vocab.vectors.name = None
|
||||||
elif "name" in nlp.meta and "lang" in nlp.meta:
|
elif "name" in nlp.meta and "lang" in nlp.meta:
|
||||||
vectors_name = "%s_%s.vectors" % (nlp.meta["lang"], nlp.meta["name"])
|
vectors_name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
|
||||||
nlp.vocab.vectors.name = vectors_name
|
nlp.vocab.vectors.name = vectors_name
|
||||||
else:
|
else:
|
||||||
raise ValueError(Errors.E092)
|
raise ValueError(Errors.E092)
|
||||||
|
|
|
@ -72,7 +72,7 @@ def _normalize_props(props):
|
||||||
# just take the first one :(
|
# just take the first one :(
|
||||||
if "|" in value:
|
if "|" in value:
|
||||||
value = value.split("|")[0]
|
value = value.split("|")[0]
|
||||||
attr = '%s_%s' % (key, value)
|
attr = f"{key}_{value}"
|
||||||
if attr in FEATURES:
|
if attr in FEATURES:
|
||||||
props.pop(key)
|
props.pop(key)
|
||||||
props[attr] = True
|
props[attr] = True
|
||||||
|
|
|
@ -985,14 +985,14 @@ class MultitaskObjective(Tagger):
|
||||||
offset = token_annotation.heads[i] - i
|
offset = token_annotation.heads[i] - i
|
||||||
offset = min(offset, 2)
|
offset = min(offset, 2)
|
||||||
offset = max(offset, -2)
|
offset = max(offset, -2)
|
||||||
return "%s-%s:%d" % (token_annotation.deps[i], token_annotation.tags[i], offset)
|
return f"{token_annotation.deps[i]}-{token_annotation.tags[i]}:{offset}"
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def make_ent_tag(i, token_annotation):
|
def make_ent_tag(i, token_annotation):
|
||||||
if token_annotation.entities is None or token_annotation.entities[i] is None:
|
if token_annotation.entities is None or token_annotation.entities[i] is None:
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
return "%s-%s" % (token_annotation.tags[i], token_annotation.entities[i])
|
return f"{token_annotation.tags[i]}-{token_annotation.entities[i]}"
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def make_sent_start(target, token_annotation, cache=True, _cache={}):
|
def make_sent_start(target, token_annotation, cache=True, _cache={}):
|
||||||
|
|
|
@ -154,8 +154,7 @@ def _decorate(heads, proj_heads, labels):
|
||||||
deco_labels = []
|
deco_labels = []
|
||||||
for tokenid, head in enumerate(heads):
|
for tokenid, head in enumerate(heads):
|
||||||
if head != proj_heads[tokenid]:
|
if head != proj_heads[tokenid]:
|
||||||
deco_labels.append(
|
deco_labels.append(f"{labels[tokenid]}{DELIMITER}{labels[head]}")
|
||||||
'%s%s%s' % (labels[tokenid], DELIMITER, labels[head]))
|
|
||||||
else:
|
else:
|
||||||
deco_labels.append(labels[tokenid])
|
deco_labels.append(labels[tokenid])
|
||||||
return deco_labels
|
return deco_labels
|
||||||
|
|
|
@ -46,9 +46,9 @@ cdef class StateClass:
|
||||||
|
|
||||||
def print_state(self, words):
|
def print_state(self, words):
|
||||||
words = list(words) + ['_']
|
words = list(words) + ['_']
|
||||||
top = words[self.S(0)] + '_%d' % self.S_(0).head
|
top = f"{words[self.S(0)]}_{self.S_(0).head}"
|
||||||
second = words[self.S(1)] + '_%d' % self.S_(1).head
|
second = f"{words[self.S(1)]}_{self.S_(1).head}"
|
||||||
third = words[self.S(2)] + '_%d' % self.S_(2).head
|
third = f"{words[self.S(2)]}_{self.S_(2).head}"
|
||||||
n0 = words[self.B(0)]
|
n0 = words[self.B(0)]
|
||||||
n1 = words[self.B(1)]
|
n1 = words[self.B(1)]
|
||||||
return ' '.join((third, second, top, '|', n0, n1))
|
return ' '.join((third, second, top, '|', n0, n1))
|
||||||
|
|
|
@ -14,11 +14,11 @@ def pytest_runtest_setup(item):
|
||||||
# recognize the option we're asking about. To avoid this, we need to
|
# recognize the option we're asking about. To avoid this, we need to
|
||||||
# pass a default value. We default to False, i.e., we act like all the
|
# pass a default value. We default to False, i.e., we act like all the
|
||||||
# options weren't given.
|
# options weren't given.
|
||||||
return item.config.getoption("--%s" % opt, False)
|
return item.config.getoption(f"--{opt}", False)
|
||||||
|
|
||||||
for opt in ["slow"]:
|
for opt in ["slow"]:
|
||||||
if opt in item.keywords and not getopt(opt):
|
if opt in item.keywords and not getopt(opt):
|
||||||
pytest.skip("need --%s option to run" % opt)
|
pytest.skip(f"need --{opt} option to run")
|
||||||
|
|
||||||
|
|
||||||
# Fixtures for language tokenizers (languages sorted alphabetically)
|
# Fixtures for language tokenizers (languages sorted alphabetically)
|
||||||
|
|
|
@ -115,7 +115,7 @@ def test_disable_pipes_list_arg(nlp):
|
||||||
@pytest.mark.parametrize("n_pipes", [100])
|
@pytest.mark.parametrize("n_pipes", [100])
|
||||||
def test_add_lots_of_pipes(nlp, n_pipes):
|
def test_add_lots_of_pipes(nlp, n_pipes):
|
||||||
for i in range(n_pipes):
|
for i in range(n_pipes):
|
||||||
nlp.add_pipe(lambda doc: doc, name="pipe_%d" % i)
|
nlp.add_pipe(lambda doc: doc, name=f"pipe_{i}")
|
||||||
assert len(nlp.pipe_names) == n_pipes
|
assert len(nlp.pipe_names) == n_pipes
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -499,7 +499,7 @@ cdef class Doc:
|
||||||
token = &self.c[i]
|
token = &self.c[i]
|
||||||
if token.ent_iob == 1:
|
if token.ent_iob == 1:
|
||||||
if start == -1:
|
if start == -1:
|
||||||
seq = ["%s|%s" % (t.text, t.ent_iob_) for t in self[i-5:i+5]]
|
seq = [f"{t.text}|{t.ent_iob_}" for t in self[i-5:i+5]]
|
||||||
raise ValueError(Errors.E093.format(seq=" ".join(seq)))
|
raise ValueError(Errors.E093.format(seq=" ".join(seq)))
|
||||||
elif token.ent_iob == 2 or token.ent_iob == 0:
|
elif token.ent_iob == 2 or token.ent_iob == 0:
|
||||||
if start != -1:
|
if start != -1:
|
||||||
|
|
|
@ -62,7 +62,7 @@ def get_lang_class(lang):
|
||||||
return registry.languages.get(lang)
|
return registry.languages.get(lang)
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
module = importlib.import_module(".lang.%s" % lang, "spacy")
|
module = importlib.import_module(f".lang.{lang}", "spacy")
|
||||||
except ImportError as err:
|
except ImportError as err:
|
||||||
raise ImportError(Errors.E048.format(lang=lang, err=err))
|
raise ImportError(Errors.E048.format(lang=lang, err=err))
|
||||||
set_lang_class(lang, getattr(module, module.__all__[0]))
|
set_lang_class(lang, getattr(module, module.__all__[0]))
|
||||||
|
@ -212,7 +212,7 @@ def load_model_from_init_py(init_file, **overrides):
|
||||||
"""
|
"""
|
||||||
model_path = Path(init_file).parent
|
model_path = Path(init_file).parent
|
||||||
meta = get_model_meta(model_path)
|
meta = get_model_meta(model_path)
|
||||||
data_dir = "%s_%s-%s" % (meta["lang"], meta["name"], meta["version"])
|
data_dir = f"{meta['lang']}_{meta['name']}-{meta['version']}"
|
||||||
data_path = model_path / data_dir
|
data_path = model_path / data_dir
|
||||||
if not model_path.exists():
|
if not model_path.exists():
|
||||||
raise IOError(Errors.E052.format(path=data_path))
|
raise IOError(Errors.E052.format(path=data_path))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user