mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
* Move tagger to _ml
This commit is contained in:
parent
1ffb0229ed
commit
aac5028b6e
|
@ -1,20 +0,0 @@
|
|||
from libc.stdint cimport uint8_t
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
from thinc.learner cimport LinearModel
|
||||
from thinc.features cimport Extractor
|
||||
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
|
||||
|
||||
from preshed.maps cimport PreshMapArray
|
||||
|
||||
from .typedefs cimport hash_t, id_t
|
||||
from .tokens cimport Tokens
|
||||
|
||||
|
||||
cdef class Tagger:
|
||||
cdef class_t predict(self, const atom_t* context, object golds=*) except *
|
||||
|
||||
cpdef readonly Pool mem
|
||||
cpdef readonly Extractor extractor
|
||||
cpdef readonly LinearModel model
|
|
@ -1,84 +0,0 @@
|
|||
# cython: profile=True
|
||||
from __future__ import unicode_literals
|
||||
from __future__ import division
|
||||
|
||||
from os import path
|
||||
import os
|
||||
import shutil
|
||||
import random
|
||||
import json
|
||||
import cython
|
||||
|
||||
from thinc.features cimport Feature, count_feats
|
||||
|
||||
|
||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
||||
if path.exists(model_dir):
|
||||
shutil.rmtree(model_dir)
|
||||
os.mkdir(model_dir)
|
||||
config = {
|
||||
'templates': templates,
|
||||
'tag_names': tag_names,
|
||||
'tag_map': tag_map
|
||||
}
|
||||
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
||||
json.dump(config, file_)
|
||||
|
||||
|
||||
cdef class Tagger:
|
||||
"""Predict some type of tag, using greedy decoding. The tagger reads its
|
||||
model and configuration from disk.
|
||||
"""
|
||||
def __init__(self, model_dir):
|
||||
self.mem = Pool()
|
||||
cfg = json.load(open(path.join(model_dir, 'config.json')))
|
||||
templates = cfg['templates']
|
||||
univ_counts = {}
|
||||
cdef unicode tag
|
||||
cdef unicode univ_tag
|
||||
tag_names = cfg['tag_names']
|
||||
self.extractor = Extractor(templates)
|
||||
self.model = LinearModel(len(tag_names) + 1, self.extractor.n_templ+2) # TODO
|
||||
if path.exists(path.join(model_dir, 'model')):
|
||||
self.model.load(path.join(model_dir, 'model'))
|
||||
|
||||
cdef class_t predict(self, atom_t* context, object golds=None) except *:
|
||||
"""Predict the tag of tokens[i].
|
||||
|
||||
>>> tokens = EN.tokenize(u'An example sentence.')
|
||||
>>> tag = EN.pos_tagger.predict(0, tokens)
|
||||
>>> assert tag == EN.pos_tagger.tag_id('DT') == 5
|
||||
"""
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self.extractor.get_feats(context, &n_feats)
|
||||
cdef const weight_t* scores = self.model.get_scores(feats, n_feats)
|
||||
guess = _arg_max(scores, self.model.nr_class)
|
||||
if golds is not None and guess not in golds:
|
||||
best = _arg_max_among(scores, golds)
|
||||
counts = {guess: {}, best: {}}
|
||||
count_feats(counts[guess], feats, n_feats, -1)
|
||||
count_feats(counts[best], feats, n_feats, 1)
|
||||
self.model.update(counts)
|
||||
return guess
|
||||
|
||||
|
||||
cdef int _arg_max(const weight_t* scores, int n_classes) except -1:
|
||||
cdef int best = 0
|
||||
cdef weight_t score = scores[best]
|
||||
cdef int i
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] >= score:
|
||||
score = scores[i]
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef int _arg_max_among(const weight_t* scores, list classes) except -1:
|
||||
cdef int best = classes[0]
|
||||
cdef weight_t score = scores[best]
|
||||
cdef class_t clas
|
||||
for clas in classes:
|
||||
if scores[clas] > score:
|
||||
score = scores[clas]
|
||||
best = clas
|
||||
return best
|
Loading…
Reference in New Issue
Block a user