Merge pull request #6827 from explosion/feature/add-labels-implicitly

This commit is contained in:
Ines Montani 2021-01-27 21:34:58 +11:00 committed by GitHub
commit abb24fdc0f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 73 additions and 9 deletions

View File

@ -614,10 +614,22 @@ cdef class ArcEager(TransitionSystem):
actions[LEFT].setdefault('dep', 0)
return actions
@property
def builtin_labels(self):
return ["ROOT", "dep"]
@property
def action_types(self):
return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)
def get_doc_labels(self, doc):
"""Get the labels required for a given Doc."""
labels = set(self.builtin_labels)
for token in doc:
if token.dep_:
labels.add(token.dep_)
return labels
def transition(self, StateClass state, action):
cdef Transition t = self.lookup_transition(action)
t.do(state.c, t.label)

View File

@ -126,6 +126,13 @@ cdef class BiluoPushDown(TransitionSystem):
def action_types(self):
return (BEGIN, IN, LAST, UNIT, OUT)
def get_doc_labels(self, doc):
labels = set()
for token in doc:
if token.ent_type:
labels.add(token.ent_type_)
return labels
def move_name(self, int move, attr_t label):
if move == OUT:
return 'O'

View File

@ -277,3 +277,10 @@ cdef class DependencyParser(Parser):
head_scores.append(score_head_dict)
label_scores.append(score_label_dict)
return head_scores, label_scores
def _ensure_labels_are_added(self, docs):
# This gives the parser a chance to add labels it's missing for a batch
# of documents. However, this isn't desirable for the dependency parser,
# because we instead have a label frequency cut-off and back off rare
# labels to 'dep'.
pass

View File

@ -132,6 +132,23 @@ cdef class Parser(TrainablePipe):
return 1
return 0
def _ensure_labels_are_added(self, docs):
"""Ensure that all labels for a batch of docs are added."""
resized = False
labels = set()
for doc in docs:
labels.update(self.moves.get_doc_labels(doc))
for label in labels:
for action in self.moves.action_types:
added = self.moves.add_action(action, label)
if added:
self.vocab.strings.add(label)
resized = True
if resized:
self._resize()
return 1
return 0
def _resize(self):
self.model.attrs["resize_output"](self.model, self.moves.n_moves)
if self._rehearsal_model not in (True, False, None):
@ -188,9 +205,9 @@ cdef class Parser(TrainablePipe):
def predict(self, docs):
if isinstance(docs, Doc):
docs = [docs]
self._ensure_labels_are_added(docs)
if not any(len(doc) for doc in docs):
result = self.moves.init_batch(docs)
self._resize()
return result
if self.cfg["beam_width"] == 1:
return self.greedy_parse(docs, drop=0.0)
@ -207,10 +224,6 @@ cdef class Parser(TrainablePipe):
cdef StateClass state
set_dropout_rate(self.model, drop)
batch = self.moves.init_batch(docs)
# This is pretty dirty, but the NER can resize itself in init_batch,
# if labels are missing. We therefore have to check whether we need to
# expand our model output.
self._resize()
model = self.model.predict(docs)
weights = get_c_weights(model)
for state in batch:
@ -234,10 +247,6 @@ cdef class Parser(TrainablePipe):
beam_width,
density=beam_density
)
# This is pretty dirty, but the NER can resize itself in init_batch,
# if labels are missing. We therefore have to check whether we need to
# expand our model output.
self._resize()
model = self.model.predict(docs)
while not batch.is_done:
states = batch.get_unfinished_states()
@ -314,6 +323,9 @@ cdef class Parser(TrainablePipe):
losses = {}
losses.setdefault(self.name, 0.)
validate_examples(examples, "Parser.update")
self._ensure_labels_are_added(
[eg.x for eg in examples] + [eg.y for eg in examples]
)
for multitask in self._multitasks:
multitask.update(examples, drop=drop, sgd=sgd)

View File

@ -1,6 +1,7 @@
import pytest
from thinc.api import Adam, fix_random_seed
from spacy import registry
from spacy.language import Language
from spacy.attrs import NORM
from spacy.vocab import Vocab
from spacy.training import Example
@ -123,3 +124,28 @@ def test_add_label_get_label(pipe_cls, n_moves, model_config):
assert len(pipe.move_names) == len(labels) * n_moves
pipe_labels = sorted(list(pipe.labels))
assert pipe_labels == labels
def test_ner_labels_added_implicitly_on_predict():
nlp = Language()
ner = nlp.add_pipe("ner")
for label in ["A", "B", "C"]:
ner.add_label(label)
nlp.initialize()
doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
ner(doc)
assert [t.ent_type_ for t in doc] == ["D", ""]
assert "D" in ner.labels
def test_ner_labels_added_implicitly_on_update():
nlp = Language()
ner = nlp.add_pipe("ner")
for label in ["A", "B", "C"]:
ner.add_label(label)
nlp.initialize()
doc = Doc(nlp.vocab, words=["hello", "world"], ents=["B-D", "O"])
example = Example(nlp.make_doc(doc.text), doc)
assert "D" not in ner.labels
nlp.update([example])
assert "D" in ner.labels