diff --git a/spacy/training/loop.py b/spacy/training/loop.py index 448b1a2c2..f29261b7e 100644 --- a/spacy/training/loop.py +++ b/spacy/training/loop.py @@ -197,9 +197,9 @@ def train_while_improving( if not (step % eval_frequency): if optimizer.averages: with nlp.use_params(optimizer.averages): - score, other_scores = evaluate(step) + score, other_scores = evaluate() else: - score, other_scores = evaluate(step) + score, other_scores = evaluate() results.append((score, step)) is_best_checkpoint = score == max(results)[0] else: @@ -248,10 +248,8 @@ def create_evaluation_callback( ) -> Callable[[], Tuple[float, Dict[str, float]]]: weights = {key: value for key, value in weights.items() if value is not None} - def evaluate(step) -> Tuple[float, Dict[str, float]]: - # Limit dev_examples by steps, so we don't spend longer on - # the estimation than we have training. - dev_examples = list(itertools.islice(dev_corpus(nlp), step)) + def evaluate() -> Tuple[float, Dict[str, float]]: + dev_examples = list(dev_corpus(nlp)) try: scores = nlp.evaluate(dev_examples) except KeyError as e: