mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Draft class to predict morphological tags
This commit is contained in:
		
							parent
							
								
									b10d0cce05
								
							
						
					
					
						commit
						ac5742223a
					
				
							
								
								
									
										131
									
								
								spacy/_morphologizer.pyx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										131
									
								
								spacy/_morphologizer.pyx
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,131 @@
 | 
				
			||||||
 | 
					from __future__ import unicode_literals
 | 
				
			||||||
 | 
					from collections import OrderedDict, defaultdict
 | 
				
			||||||
 | 
					import cytoolz
 | 
				
			||||||
 | 
					import ujson
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy
 | 
				
			||||||
 | 
					cimport numpy as np
 | 
				
			||||||
 | 
					from .util import msgpack
 | 
				
			||||||
 | 
					from .util import msgpack_numpy
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from thinc.api import chain
 | 
				
			||||||
 | 
					from thinc.neural.util import to_categorical, copy_array
 | 
				
			||||||
 | 
					from . import util
 | 
				
			||||||
 | 
					from .pipe import Pipe
 | 
				
			||||||
 | 
					from ._ml import Tok2Vec, build_tagger_model
 | 
				
			||||||
 | 
					from ._ml import link_vectors_to_models, zero_init, flatten
 | 
				
			||||||
 | 
					from ._ml import create_default_optimizer
 | 
				
			||||||
 | 
					from .errors import Errors, TempErrors
 | 
				
			||||||
 | 
					from .compat import json_dumps, basestring_
 | 
				
			||||||
 | 
					from .tokens.doc cimport Doc
 | 
				
			||||||
 | 
					from .vocab cimport Vocab
 | 
				
			||||||
 | 
					from .morphology cimport Morphology
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Morphologizer(Pipe):
 | 
				
			||||||
 | 
					    name = 'morphologizer'
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    @classmethod
 | 
				
			||||||
 | 
					    def Model(cls, attr_nums, **cfg):
 | 
				
			||||||
 | 
					        if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'):
 | 
				
			||||||
 | 
					            raise ValueError(TempErrors.T008)
 | 
				
			||||||
 | 
					        return build_morphologizer_model(attr_nums, **cfg)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, vocab, model=True, **cfg):
 | 
				
			||||||
 | 
					        self.vocab = vocab
 | 
				
			||||||
 | 
					        self.model = model
 | 
				
			||||||
 | 
					        self.cfg = OrderedDict(sorted(cfg.items()))
 | 
				
			||||||
 | 
					        self.cfg.setdefault('cnn_maxout_pieces', 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def labels(self):
 | 
				
			||||||
 | 
					        return self.vocab.morphology.tag_names
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def tok2vec(self):
 | 
				
			||||||
 | 
					        if self.model in (None, True, False):
 | 
				
			||||||
 | 
					            return None
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            return chain(self.model.tok2vec, flatten)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __call__(self, doc):
 | 
				
			||||||
 | 
					        features, tokvecs = self.predict([doc])
 | 
				
			||||||
 | 
					        self.set_annotations([doc], tags, tensors=tokvecs)
 | 
				
			||||||
 | 
					        return doc
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pipe(self, stream, batch_size=128, n_threads=-1):
 | 
				
			||||||
 | 
					        for docs in cytoolz.partition_all(batch_size, stream):
 | 
				
			||||||
 | 
					            docs = list(docs)
 | 
				
			||||||
 | 
					            features, tokvecs = self.predict(docs)
 | 
				
			||||||
 | 
					            self.set_annotations(docs, features, tensors=tokvecs)
 | 
				
			||||||
 | 
					            yield from docs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def predict(self, docs):
 | 
				
			||||||
 | 
					        if not any(len(doc) for doc in docs):
 | 
				
			||||||
 | 
					            # Handle case where there are no tokens in any docs.
 | 
				
			||||||
 | 
					            n_labels = self.model.nO
 | 
				
			||||||
 | 
					            guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
 | 
				
			||||||
 | 
					            tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
 | 
				
			||||||
 | 
					            return guesses, tokvecs
 | 
				
			||||||
 | 
					        tokvecs = self.model.tok2vec(docs)
 | 
				
			||||||
 | 
					        scores = self.model.softmax(tokvecs)
 | 
				
			||||||
 | 
					        guesses = []
 | 
				
			||||||
 | 
					        # Resolve multisoftmax into guesses
 | 
				
			||||||
 | 
					        for doc_scores in scores:
 | 
				
			||||||
 | 
					            guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes))
 | 
				
			||||||
 | 
					        return guesses, tokvecs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def set_annotations(self, docs, batch_feature_ids, tensors=None):
 | 
				
			||||||
 | 
					        if isinstance(docs, Doc):
 | 
				
			||||||
 | 
					            docs = [docs]
 | 
				
			||||||
 | 
					        cdef Doc doc
 | 
				
			||||||
 | 
					        cdef Vocab vocab = self.vocab
 | 
				
			||||||
 | 
					        for i, doc in enumerate(docs):
 | 
				
			||||||
 | 
					            doc_feat_ids = batch_feat_ids[i]
 | 
				
			||||||
 | 
					            if hasattr(doc_feat_ids, 'get'):
 | 
				
			||||||
 | 
					                doc_feat_ids = doc_feat_ids.get()
 | 
				
			||||||
 | 
					            # Convert the neuron indices into feature IDs.
 | 
				
			||||||
 | 
					            offset = self.vocab.morphology.first_feature
 | 
				
			||||||
 | 
					            for j, nr_feat in enumerate(self.model.softmax.out_sizes):
 | 
				
			||||||
 | 
					                doc_feat_ids[:, j] += offset
 | 
				
			||||||
 | 
					                offset += nr_feat
 | 
				
			||||||
 | 
					            # Now add the analysis, and set the hash.
 | 
				
			||||||
 | 
					            for j in range(doc_feat_ids.shape[0]):
 | 
				
			||||||
 | 
					                doc.c[j].morph = self.vocab.morphology.add(doc_feat_ids[j])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def update(self, docs, golds, drop=0., sgd=None, losses=None):
 | 
				
			||||||
 | 
					        if losses is not None and self.name not in losses:
 | 
				
			||||||
 | 
					            losses[self.name] = 0.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop)
 | 
				
			||||||
 | 
					        loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
 | 
				
			||||||
 | 
					        bp_tag_scores(d_tag_scores, sgd=sgd)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if losses is not None:
 | 
				
			||||||
 | 
					            losses[self.name] += loss
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def get_loss(self, docs, golds, scores):
 | 
				
			||||||
 | 
					        guesses = []
 | 
				
			||||||
 | 
					        for doc_scores in scores:
 | 
				
			||||||
 | 
					            guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes))
 | 
				
			||||||
 | 
					        guesses = self.model.ops.flatten(guesses)
 | 
				
			||||||
 | 
					        cdef int idx = 0
 | 
				
			||||||
 | 
					        target = numpy.zeros(scores.shape, dtype='f')
 | 
				
			||||||
 | 
					        for gold in golds:
 | 
				
			||||||
 | 
					            for features in gold.morphology:
 | 
				
			||||||
 | 
					                if features is None:
 | 
				
			||||||
 | 
					                    target[idx] = guesses[idx]
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    for feature in features:
 | 
				
			||||||
 | 
					                        column = feature_to_column(feature) # TODO
 | 
				
			||||||
 | 
					                        target[idx, column] = 1
 | 
				
			||||||
 | 
					                idx += 1
 | 
				
			||||||
 | 
					        target = self.model.ops.xp.array(target, dtype='f')
 | 
				
			||||||
 | 
					        d_scores = scores - target
 | 
				
			||||||
 | 
					        loss = (d_scores**2).sum()
 | 
				
			||||||
 | 
					        d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
 | 
				
			||||||
 | 
					        return float(loss), d_scores
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def use_params(self, params):
 | 
				
			||||||
 | 
					        with self.model.use_params(params):
 | 
				
			||||||
 | 
					            yield
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user