mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
* Clean up train.py
This commit is contained in:
parent
9f16848b60
commit
adcad4f353
|
@ -27,165 +27,6 @@ from spacy.syntax.conll import GoldParse
|
|||
from spacy.scorer import Scorer
|
||||
|
||||
|
||||
def is_punct_label(label):
|
||||
return label == 'P' or label.lower() == 'punct'
|
||||
|
||||
|
||||
def read_tokenized_gold(file_):
|
||||
"""Read a standard CoNLL/MALT-style format"""
|
||||
sents = []
|
||||
for sent_str in file_.read().strip().split('\n\n'):
|
||||
ids = []
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
for i, line in enumerate(sent_str.split('\n')):
|
||||
id_, word, pos_string, head_idx, label = _parse_line(line)
|
||||
words.append(word)
|
||||
if head_idx == -1:
|
||||
head_idx = i
|
||||
ids.append(id_)
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
text = ' '.join(words)
|
||||
sents.append((text, [words], ids, words, tags, heads, labels))
|
||||
return sents
|
||||
|
||||
|
||||
def read_docparse_gold(file_):
|
||||
paragraphs = []
|
||||
for sent_str in file_.read().strip().split('\n\n'):
|
||||
if not sent_str.strip():
|
||||
continue
|
||||
words = []
|
||||
heads = []
|
||||
labels = []
|
||||
tags = []
|
||||
ids = []
|
||||
lines = sent_str.strip().split('\n')
|
||||
raw_text = lines.pop(0).strip()
|
||||
tok_text = lines.pop(0).strip()
|
||||
for i, line in enumerate(lines):
|
||||
id_, word, pos_string, head_idx, label = _parse_line(line)
|
||||
if label == 'root':
|
||||
label = 'ROOT'
|
||||
words.append(word)
|
||||
if head_idx < 0:
|
||||
head_idx = id_
|
||||
ids.append(id_)
|
||||
heads.append(head_idx)
|
||||
labels.append(label)
|
||||
tags.append(pos_string)
|
||||
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
|
||||
for sent_str in tok_text.split('<SENT>')]
|
||||
paragraphs.append((raw_text, tokenized, ids, words, tags, heads, labels))
|
||||
return paragraphs
|
||||
|
||||
|
||||
def _map_indices_to_tokens(ids, heads):
|
||||
mapped = []
|
||||
for head in heads:
|
||||
if head not in ids:
|
||||
mapped.append(None)
|
||||
else:
|
||||
mapped.append(ids.index(head))
|
||||
return mapped
|
||||
|
||||
|
||||
def _parse_line(line):
|
||||
pieces = line.split()
|
||||
if len(pieces) == 4:
|
||||
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
|
||||
else:
|
||||
id_ = int(pieces[0])
|
||||
word = pieces[1]
|
||||
pos = pieces[3]
|
||||
head_idx = int(pieces[6])
|
||||
label = pieces[7]
|
||||
return id_, word, pos, head_idx, label
|
||||
|
||||
|
||||
loss = 0
|
||||
def _align_annotations_to_non_gold_tokens(tokens, words, annot):
|
||||
global loss
|
||||
tags = []
|
||||
heads = []
|
||||
labels = []
|
||||
orig_words = list(words)
|
||||
missed = []
|
||||
for token in tokens:
|
||||
while annot and token.idx > annot[0][0]:
|
||||
miss_id, miss_tag, miss_head, miss_label = annot.pop(0)
|
||||
miss_w = words.pop(0)
|
||||
if not is_punct_label(miss_label):
|
||||
missed.append(miss_w)
|
||||
loss += 1
|
||||
if not annot:
|
||||
tags.append(None)
|
||||
heads.append(None)
|
||||
labels.append(None)
|
||||
continue
|
||||
id_, tag, head, label = annot[0]
|
||||
if token.idx == id_:
|
||||
tags.append(tag)
|
||||
heads.append(head)
|
||||
labels.append(label)
|
||||
annot.pop(0)
|
||||
words.pop(0)
|
||||
elif token.idx < id_:
|
||||
tags.append(None)
|
||||
heads.append(None)
|
||||
labels.append(None)
|
||||
else:
|
||||
raise StandardError
|
||||
#if missed:
|
||||
# print orig_words
|
||||
# print missed
|
||||
# for t in tokens:
|
||||
# print t.idx, t.orth_
|
||||
return loss, tags, heads, labels
|
||||
|
||||
|
||||
def iter_data(paragraphs, tokenizer, gold_preproc=False):
|
||||
for raw, tokenized, ids, words, tags, heads, labels in paragraphs:
|
||||
if not gold_preproc:
|
||||
tokens = tokenizer(raw)
|
||||
loss, tags, heads, labels = _align_annotations_to_non_gold_tokens(
|
||||
tokens, list(words),
|
||||
zip(ids, tags, heads, labels))
|
||||
ids = [t.idx for t in tokens]
|
||||
heads = _map_indices_to_tokens(ids, heads)
|
||||
yield tokens, tags, heads, labels
|
||||
else:
|
||||
assert len(words) == len(heads)
|
||||
for words in tokenized:
|
||||
sent_ids = ids[:len(words)]
|
||||
sent_tags = tags[:len(words)]
|
||||
sent_heads = heads[:len(words)]
|
||||
sent_labels = labels[:len(words)]
|
||||
sent_heads = _map_indices_to_tokens(sent_ids, sent_heads)
|
||||
tokens = tokenizer.tokens_from_list(words)
|
||||
yield tokens, sent_tags, sent_heads, sent_labels
|
||||
ids = ids[len(words):]
|
||||
tags = tags[len(words):]
|
||||
heads = heads[len(words):]
|
||||
labels = labels[len(words):]
|
||||
|
||||
|
||||
def get_labels(sents):
|
||||
left_labels = set()
|
||||
right_labels = set()
|
||||
for raw, tokenized, ids, words, tags, heads, labels in sents:
|
||||
for child, (head, label) in enumerate(zip(heads, labels)):
|
||||
if head > child:
|
||||
left_labels.add(label)
|
||||
elif head < child:
|
||||
right_labels.add(label)
|
||||
return list(sorted(left_labels)), list(sorted(right_labels))
|
||||
|
||||
|
||||
def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||
gold_preproc=False, n_sents=0):
|
||||
dep_model_dir = path.join(model_dir, 'deps')
|
||||
|
@ -231,7 +72,8 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
|||
gold = GoldParse(tokens, annot_tuples)
|
||||
nlp.tagger(tokens)
|
||||
nlp.parser.train(tokens, gold)
|
||||
nlp.entity.train(tokens, gold)
|
||||
if gold.ents:
|
||||
nlp.entity.train(tokens, gold)
|
||||
nlp.tagger.train(tokens, gold.tags)
|
||||
|
||||
print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
|
||||
|
|
Loading…
Reference in New Issue
Block a user