* Clean up train.py

This commit is contained in:
Matthew Honnibal 2015-04-15 06:02:04 +02:00
parent 9f16848b60
commit adcad4f353

View File

@ -27,165 +27,6 @@ from spacy.syntax.conll import GoldParse
from spacy.scorer import Scorer
def is_punct_label(label):
return label == 'P' or label.lower() == 'punct'
def read_tokenized_gold(file_):
"""Read a standard CoNLL/MALT-style format"""
sents = []
for sent_str in file_.read().strip().split('\n\n'):
ids = []
words = []
heads = []
labels = []
tags = []
for i, line in enumerate(sent_str.split('\n')):
id_, word, pos_string, head_idx, label = _parse_line(line)
words.append(word)
if head_idx == -1:
head_idx = i
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
text = ' '.join(words)
sents.append((text, [words], ids, words, tags, heads, labels))
return sents
def read_docparse_gold(file_):
paragraphs = []
for sent_str in file_.read().strip().split('\n\n'):
if not sent_str.strip():
continue
words = []
heads = []
labels = []
tags = []
ids = []
lines = sent_str.strip().split('\n')
raw_text = lines.pop(0).strip()
tok_text = lines.pop(0).strip()
for i, line in enumerate(lines):
id_, word, pos_string, head_idx, label = _parse_line(line)
if label == 'root':
label = 'ROOT'
words.append(word)
if head_idx < 0:
head_idx = id_
ids.append(id_)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
tokenized = [sent_str.replace('<SEP>', ' ').split(' ')
for sent_str in tok_text.split('<SENT>')]
paragraphs.append((raw_text, tokenized, ids, words, tags, heads, labels))
return paragraphs
def _map_indices_to_tokens(ids, heads):
mapped = []
for head in heads:
if head not in ids:
mapped.append(None)
else:
mapped.append(ids.index(head))
return mapped
def _parse_line(line):
pieces = line.split()
if len(pieces) == 4:
return 0, pieces[0], pieces[1], int(pieces[2]) - 1, pieces[3]
else:
id_ = int(pieces[0])
word = pieces[1]
pos = pieces[3]
head_idx = int(pieces[6])
label = pieces[7]
return id_, word, pos, head_idx, label
loss = 0
def _align_annotations_to_non_gold_tokens(tokens, words, annot):
global loss
tags = []
heads = []
labels = []
orig_words = list(words)
missed = []
for token in tokens:
while annot and token.idx > annot[0][0]:
miss_id, miss_tag, miss_head, miss_label = annot.pop(0)
miss_w = words.pop(0)
if not is_punct_label(miss_label):
missed.append(miss_w)
loss += 1
if not annot:
tags.append(None)
heads.append(None)
labels.append(None)
continue
id_, tag, head, label = annot[0]
if token.idx == id_:
tags.append(tag)
heads.append(head)
labels.append(label)
annot.pop(0)
words.pop(0)
elif token.idx < id_:
tags.append(None)
heads.append(None)
labels.append(None)
else:
raise StandardError
#if missed:
# print orig_words
# print missed
# for t in tokens:
# print t.idx, t.orth_
return loss, tags, heads, labels
def iter_data(paragraphs, tokenizer, gold_preproc=False):
for raw, tokenized, ids, words, tags, heads, labels in paragraphs:
if not gold_preproc:
tokens = tokenizer(raw)
loss, tags, heads, labels = _align_annotations_to_non_gold_tokens(
tokens, list(words),
zip(ids, tags, heads, labels))
ids = [t.idx for t in tokens]
heads = _map_indices_to_tokens(ids, heads)
yield tokens, tags, heads, labels
else:
assert len(words) == len(heads)
for words in tokenized:
sent_ids = ids[:len(words)]
sent_tags = tags[:len(words)]
sent_heads = heads[:len(words)]
sent_labels = labels[:len(words)]
sent_heads = _map_indices_to_tokens(sent_ids, sent_heads)
tokens = tokenizer.tokens_from_list(words)
yield tokens, sent_tags, sent_heads, sent_labels
ids = ids[len(words):]
tags = tags[len(words):]
heads = heads[len(words):]
labels = labels[len(words):]
def get_labels(sents):
left_labels = set()
right_labels = set()
for raw, tokenized, ids, words, tags, heads, labels in sents:
for child, (head, label) in enumerate(zip(heads, labels)):
if head > child:
left_labels.add(label)
elif head < child:
right_labels.add(label)
return list(sorted(left_labels)), list(sorted(right_labels))
def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
gold_preproc=False, n_sents=0):
dep_model_dir = path.join(model_dir, 'deps')
@ -231,7 +72,8 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
gold = GoldParse(tokens, annot_tuples)
nlp.tagger(tokens)
nlp.parser.train(tokens, gold)
nlp.entity.train(tokens, gold)
if gold.ents:
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)