Update docstrings, docs and pipe consistency

This commit is contained in:
Ines Montani 2020-07-28 13:37:31 +02:00
parent 0094cb0d04
commit ae4d8a6ffd
19 changed files with 955 additions and 133 deletions

View File

@ -1100,13 +1100,12 @@ class Language:
return scorer.score(examples)
@contextmanager
def use_params(self, params: dict, **cfg):
def use_params(self, params: dict):
"""Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block.
params (dict): A dictionary of parameters keyed by model ID.
**cfg: Config parameters.
EXAMPLE:
>>> with nlp.use_params(optimizer.averages):

View File

@ -128,7 +128,8 @@ class EntityLinker(Pipe):
def begin_training(
self,
get_examples: Callable = lambda: [],
get_examples: Callable[[], Iterable[Example]] = lambda: [],
*,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
@ -273,7 +274,7 @@ class EntityLinker(Pipe):
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): PRocessed documents in order.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/entitylinker#pipe
"""

View File

@ -97,7 +97,7 @@ class Morphologizer(Tagger):
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 1
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/morphologizer#add_label
"""

View File

@ -8,41 +8,51 @@ from ..errors import Errors
from .. import util
def deserialize_config(path):
if path.exists():
return srsly.read_json(path)
else:
return {}
class Pipe:
"""This class is not instantiated directly. Components inherit from it, and
it defines the interface that components should follow to function as
components in a spaCy analysis pipeline.
"""This class is a base class and not instantiated directly. Trainable
pipeline components like the EntityRecognizer or TextCategorizer inherit
from it and it defines the interface that components should follow to
function as trainable components in a spaCy pipeline.
DOCS: https://spacy.io/api/pipe
"""
name = None
def __init__(self, vocab, model, name, **cfg):
"""Create a new pipe instance."""
"""Initialize a pipeline component.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name.
**cfg: Additonal settings and config parameters.
DOCS: https://spacy.io/api/pipe#init
"""
raise NotImplementedError
def __call__(self, Doc doc):
"""Apply the pipe to one document. The document is
modified in-place, and returned.
"""Add context-sensitive embeddings to the Doc.tensor attribute.
Both __call__ and pipe should delegate to the `predict()`
and `set_annotations()` methods.
docs (Doc): The Doc to preocess.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/pipe#call
"""
scores = self.predict([doc])
self.set_annotations([doc], scores)
return doc
def pipe(self, stream, batch_size=128):
"""Apply the pipe to a stream of documents.
def pipe(self, stream, *, batch_size=128):
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
Both __call__ and pipe should delegate to the `predict()`
and `set_annotations()` methods.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/pipe#pipe
"""
for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs)
@ -50,38 +60,90 @@ class Pipe:
yield from docs
def predict(self, docs):
"""Apply the pipeline's model to a batch of docs, without
modifying them.
"""Apply the pipeline's model to a batch of docs, without modifying them.
Returns a single tensor for a batch of documents.
docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/pipe#predict
"""
raise NotImplementedError
def set_annotations(self, docs, scores):
"""Modify a batch of documents, using pre-computed scores."""
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Pipe.predict.
DOCS: https://spacy.io/api/pipe#predict
"""
raise NotImplementedError
def rehearse(self, examples, sgd=None, losses=None, **config):
def rehearse(self, examples, *, sgd=None, losses=None, **config):
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
teach the current model to make predictions similar to an initial model,
to try to address the "catastrophic forgetting" problem. This feature is
experimental.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/pipe#rehearse
"""
pass
def get_loss(self, examples, scores):
"""Find the loss and gradient of loss for the batch of
examples (with embedded docs) and their predicted scores."""
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/pipe#get_loss
"""
raise NotImplementedError
def add_label(self, label):
"""Add an output label, to be predicted by the model.
"""Add an output label, to be predicted by the model. It's possible to
extend pretrained models with new labels, but care should be taken to
avoid the "catastrophic forgetting" problem.
It's possible to extend pretrained models with new labels,
but care should be taken to avoid the "catastrophic forgetting"
problem.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/pipe#add_label
"""
raise NotImplementedError
def create_optimizer(self):
"""Create an optimizer for the pipeline component.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#create_optimizer
"""
return create_default_optimizer()
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
"""Initialize the pipe for training, using data exampes if available.
If no model has been initialized yet, the model is added."""
"""Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/pipe#begin_training
"""
self.model.initialize()
if hasattr(self, "vocab"):
link_vectors_to_models(self.vocab)
@ -90,6 +152,7 @@ class Pipe:
return sgd
def set_output(self, nO):
# TODO: document this across components?
if self.model.has_dim("nO") is not False:
self.model.set_dim("nO", nO)
if self.model.has_ref("output_layer"):
@ -99,6 +162,7 @@ class Pipe:
"""Get non-zero gradients of the model's parameters, as a dictionary
keyed by the parameter ID. The values are (weights, gradients) tuples.
"""
# TODO: How is this used?
gradients = {}
queue = [self.model]
seen = set()
@ -113,18 +177,33 @@ class Pipe:
return gradients
def use_params(self, params):
"""Modify the pipe's model, to use the given parameter values."""
"""Modify the pipe's model, to use the given parameter values. At the
end of the context, the original parameters are restored.
params (dict): The parameter values to use in the model.
DOCS: https://spacy.io/api/pipe#use_params
"""
with self.model.use_params(params):
yield
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores.
DOCS: https://spacy.io/api/pipe#score
"""
return {}
def to_bytes(self, exclude=tuple()):
"""Serialize the pipe to a bytestring.
exclude (list): String names of serialization fields to exclude.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/pipe#to_bytes
"""
serialize = {}
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
@ -134,7 +213,13 @@ class Pipe:
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, exclude=tuple()):
"""Load the pipe from a bytestring."""
"""Load the pipe from a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_bytes
"""
def load_model(b):
try:
@ -151,7 +236,13 @@ class Pipe:
return self
def to_disk(self, path, exclude=tuple()):
"""Serialize the pipe to disk."""
"""Serialize the pipe to disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/pipe#to_disk
"""
serialize = {}
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
@ -159,7 +250,14 @@ class Pipe:
util.to_disk(path, serialize, exclude)
def from_disk(self, path, exclude=tuple()):
"""Load the pipe from disk."""
"""Load the pipe from disk.
path (str / Path): Path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (Pipe): The loaded object.
DOCS: https://spacy.io/api/pipe#from_disk
"""
def load_model(p):
try:
@ -173,3 +271,10 @@ class Pipe:
deserialize["model"] = load_model
util.from_disk(path, deserialize, exclude)
return self
def deserialize_config(path):
if path.exists():
return srsly.read_json(path)
else:
return {}

View File

@ -329,7 +329,7 @@ class Tagger(Pipe):
label (str): The label to add.
values (Dict[int, str]): Optional values to map to the label, e.g. a
tag map dictionary.
RETURNS (int): 1
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/tagger#add_label
"""
@ -355,10 +355,6 @@ class Tagger(Pipe):
self.vocab.morphology.load_tag_map(tag_map)
return 1
def use_params(self, params):
with self.model.use_params(params):
yield
def score(self, examples, **kwargs):
"""Score a batch of examples.

View File

@ -56,7 +56,17 @@ dropout = null
"textcat",
assigns=["doc.cats"],
default_config={"labels": [], "model": DEFAULT_TEXTCAT_MODEL},
scores=["cats_score", "cats_score_desc", "cats_p", "cats_r", "cats_f", "cats_macro_f", "cats_macro_auc", "cats_f_per_type", "cats_macro_auc_per_type"],
scores=[
"cats_score",
"cats_score_desc",
"cats_p",
"cats_r",
"cats_f",
"cats_macro_f",
"cats_macro_auc",
"cats_f_per_type",
"cats_macro_auc_per_type",
],
default_score_weights={"cats_score": 1.0},
)
def make_textcat(
@ -120,7 +130,7 @@ class TextCategorizer(Pipe):
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): PRocessed documents in order.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/textcategorizer#pipe
"""
@ -288,7 +298,7 @@ class TextCategorizer(Pipe):
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 1.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/textcategorizer#add_label
"""

View File

@ -34,10 +34,13 @@ def make_tok2vec(nlp: Language, name: str, model: Model) -> "Tok2Vec":
class Tok2Vec(Pipe):
def __init__(self, vocab: Vocab, model: Model, name: str = "tok2vec") -> None:
"""Construct a new statistical model. Weights are not allocated on
initialisation.
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
instance with the `Doc` objects it will process.
"""Initialize a tok2vec component.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name.
DOCS: https://spacy.io/api/tok2vec#init
"""
self.vocab = vocab
self.model = model
@ -57,20 +60,27 @@ class Tok2Vec(Pipe):
self.add_listener(node)
def __call__(self, doc: Doc) -> Doc:
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
model. Vectors are set to the `Doc.tensor` attribute.
docs (Doc or iterable): One or more documents to add vectors to.
RETURNS (dict or None): Intermediate computations.
"""Add context-sensitive embeddings to the Doc.tensor attribute.
docs (Doc): The Doc to preocess.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/tok2vec#call
"""
tokvecses = self.predict([doc])
self.set_annotations([doc], tokvecses)
return doc
def pipe(self, stream: Iterator[Doc], batch_size: int = 128) -> Iterator[Doc]:
"""Process `Doc` objects as a stream.
stream (iterator): A sequence of `Doc` objects to process.
batch_size (int): Number of `Doc` objects to group.
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
def pipe(self, stream: Iterator[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are
applied to the Doc.
stream (Iterable[Doc]): A stream of documents.
batch_size (int): The number of documents to buffer.
YIELDS (Doc): Processed documents in order.
DOCS: https://spacy.io/api/tok2vec#pipe
"""
for docs in minibatch(stream, batch_size):
docs = list(docs)
@ -78,10 +88,14 @@ class Tok2Vec(Pipe):
self.set_annotations(docs, tokvecses)
yield from docs
def predict(self, docs: Sequence[Doc]):
"""Return a single tensor for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
RETURNS (object): Vector representations for each token in the documents.
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying them.
Returns a single tensor for a batch of documents.
docs (Iterable[Doc]): The documents to predict.
RETURNS: Vector representations for each token in the documents.
DOCS: https://spacy.io/api/tok2vec#predict
"""
tokvecs = self.model.predict(docs)
batch_id = Tok2VecListener.get_batch_id(docs)
@ -90,9 +104,12 @@ class Tok2Vec(Pipe):
return tokvecs
def set_annotations(self, docs: Sequence[Doc], tokvecses) -> None:
"""Set the tensor attribute for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
tokvecs (object): Vector representation for each token in the documents.
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
tokvecses: The tensors to set, produced by Tok2Vec.predict.
DOCS: https://spacy.io/api/tok2vec#predict
"""
for doc, tokvecs in zip(docs, tokvecses):
assert tokvecs.shape[0] == len(doc)
@ -107,13 +124,19 @@ class Tok2Vec(Pipe):
losses: Optional[Dict[str, float]] = None,
set_annotations: bool = False,
):
"""Update the model.
examples (Iterable[Example]): A batch of examples
drop (float): The droput rate.
sgd (Optimizer): An optimizer.
losses (Dict[str, float]): Dictionary to update with the loss, keyed by component.
set_annotations (bool): whether or not to update the examples with the predictions
RETURNS (Dict[str, float]): The updated losses dictionary
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
set_annotations (bool): Whether or not to update the Example objects
with the predictions.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/tok2vec#update
"""
if losses is None:
losses = {}
@ -122,7 +145,6 @@ class Tok2Vec(Pipe):
docs = [docs]
set_dropout_rate(self.model, drop)
tokvecs, bp_tokvecs = self.model.begin_update(docs)
d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
losses.setdefault(self.name, 0.0)
@ -156,14 +178,23 @@ class Tok2Vec(Pipe):
def begin_training(
self,
get_examples: Callable = lambda: [],
get_examples: Callable[[], Iterable[Example]] = lambda: [],
*,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
sgd: Optional[Optimizer] = None,
):
"""Allocate models and pre-process training data
"""Initialize the pipe for training, using data examples if available.
get_examples (function): Function returning example training data.
pipeline (list): The pipeline the model is part of.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/tok2vec#begin_training
"""
docs = [Doc(Vocab(), words=["hello"])]
self.model.initialize(X=docs)

View File

@ -123,6 +123,8 @@ cdef class Parser:
resized = True
if resized:
self._resize()
return 1
return 0
def _resize(self):
self.model.attrs["resize_output"](self.model, self.moves.n_moves)

View File

@ -1182,6 +1182,7 @@ VECTORS_KEY = "spacy_pretrained_vectors"
def create_default_optimizer() -> Optimizer:
# TODO: Do we still want to allow env_opt?
learn_rate = env_opt("learn_rate", 0.001)
beta1 = env_opt("optimizer_B1", 0.9)
beta2 = env_opt("optimizer_B2", 0.999)

View File

@ -248,19 +248,20 @@ component.
## DependencyParser.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> parser = DependencyParser(nlp.vocab)
> with parser.use_params():
> with parser.use_params(optimizer.averages):
> parser.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## DependencyParser.add_label {#add_label tag="method"}
@ -274,8 +275,9 @@ Add a new label to the pipe.
> ```
| Name | Type | Description |
| ------- | ---- | ----------------- |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## DependencyParser.to_disk {#to_disk tag="method"}

View File

@ -239,7 +239,8 @@ Create an optimizer for the pipeline component.
## EntityLinker.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's EL model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
@ -250,8 +251,8 @@ Modify the pipe's EL model, to use the given parameter values.
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## EntityLinker.to_disk {#to_disk tag="method"}

View File

@ -247,7 +247,8 @@ Create an optimizer for the pipeline component.
## EntityRecognizer.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
@ -258,8 +259,8 @@ Modify the pipe's model, to use the given parameter values.
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## EntityRecognizer.add_label {#add_label tag="method"}
@ -273,8 +274,9 @@ Add a new label to the pipe.
> ```
| Name | Type | Description |
| ------- | ---- | ----------------- |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## EntityRecognizer.to_disk {#to_disk tag="method"}

View File

@ -271,7 +271,6 @@ their original weights after the block.
| Name | Type | Description |
| -------- | ---- | --------------------------------------------- |
| `params` | dict | A dictionary of parameters keyed by model ID. |
| `**cfg` | - | Config parameters. |
## Language.create_pipe {#create_pipe tag="method" new="2"}

View File

@ -233,19 +233,20 @@ Create an optimizer for the pipeline component.
## Morphologizer.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> morphologizer = nlp.add_pipe("morphologizer")
> with morphologizer.use_params():
> with morphologizer.use_params(optimizer.averages):
> morphologizer.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## Morphologizer.add_label {#add_label tag="method"}
@ -260,8 +261,9 @@ both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
> ```
| Name | Type | Description |
| ------- | ---- | ----------------- |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## Morphologizer.to_disk {#to_disk tag="method"}

View File

@ -1,6 +1,381 @@
---
title: Pipe
tag: class
teaser: Base class for trainable pipeline components
---
TODO: write
This class is a base class and **not instantiated directly**. Trainable pipeline
components like the [`EntityRecognizer`](/api/entityrecognizer) or
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
interface that components should follow to function as trainable components in a
spaCy pipeline.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/pipe.pyx
```
## Pipe.\_\_init\_\_ {#init tag="method"}
> #### Example
>
> ```python
> from spacy.pipeline import Pipe
> from spacy.language import Language
>
> class CustomPipe(Pipe):
> ...
>
> @Language.factory("your_custom_pipe", default_config={"model": MODEL})
> def make_custom_pipe(nlp, name, model):
> return CustomPipe(nlp.vocab, model, name)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe).
<Infobox variant="danger">
This method needs to be overwritten with your own custom `__init__` method.
</Infobox>
| Name | Type | Description |
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The shared vocabulary. |
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
| `**cfg` | | Additional config parameters and settings. |
## Pipe.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) delegate to the
[`predict`](/api/pipe#predict) and
[`set_annotations`](/api/pipe#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> pipe = nlp.add_pipe("your_custom_pipe")
> # This usually happens under the hood
> processed = pipe(doc)
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------ |
| `doc` | `Doc` | The document to process. |
| **RETURNS** | `Doc` | The processed document. |
## Pipe.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
[`pipe`](/api/pipe#pipe) delegate to the [`predict`](/api/pipe#predict) and
[`set_annotations`](/api/pipe#set_annotations) methods.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> for doc in pipe.pipe(docs, batch_size=50):
> pass
> ```
| Name | Type | Description |
| -------------- | --------------- | ----------------------------------------------------- |
| `stream` | `Iterable[Doc]` | A stream of documents. |
| _keyword-only_ | | |
| `batch_size` | int | The number of documents to buffer. Defaults to `128`. |
| **YIELDS** | `Doc` | The processed documents in order. |
## Pipe.begin_training {#begin_training tag="method"}
Initialize the pipe for training, using data examples if available. Return an
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> optimizer = pipe.begin_training(pipeline=nlp.pipeline)
> ```
| Name | Type | Description |
| -------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
| _keyword-only_ | | |
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/pipe#create_optimizer) if not set. |
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
## Pipe.predict {#predict tag="method"}
Apply the pipeline's model to a batch of docs, without modifying them.
<Infobox variant="danger">
This method needs to be overwritten with your own custom `predict` method.
</Infobox>
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> scores = pipe.predict([doc1, doc2])
> ```
| Name | Type | Description |
| ----------- | --------------- | ----------------------------------------- |
| `docs` | `Iterable[Doc]` | The documents to predict. |
| **RETURNS** | - | The model's prediction for each document. |
## Pipe.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, using pre-computed scores.
<Infobox variant="danger">
This method needs to be overwritten with your own custom `set_annotations`
method.
</Infobox>
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> scores = pipe.predict(docs)
> pipe.set_annotations(docs, scores)
> ```
| Name | Type | Description |
| -------- | --------------- | ---------------------------------------------- |
| `docs` | `Iterable[Doc]` | The documents to modify. |
| `scores` | - | The scores to set, produced by `Pipe.predict`. |
## Pipe.update {#update tag="method"}
Learn from a batch of documents and gold-standard information, updating the
pipe's model. Delegates to [`predict`](/api/pipe#predict).
<Infobox variant="danger">
This method needs to be overwritten with your own custom `update` method.
</Infobox>
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> optimizer = nlp.begin_training()
> losses = pipe.update(examples, sgd=optimizer)
> ```
| Name | Type | Description |
| ----------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
| _keyword-only_ | | |
| `drop` | float | The dropout rate. |
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/pipe#set_annotations). |
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
## Pipe.rehearse {#rehearse tag="method,experimental"}
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
current model to make predictions similar to an initial model, to try to address
the "catastrophic forgetting" problem. This feature is experimental.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> optimizer = nlp.begin_training()
> losses = pipe.rehearse(examples, sgd=optimizer)
> ```
| Name | Type | Description |
| -------------- | --------------------------------------------------- | ----------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
| _keyword-only_ | | |
| `drop` | float | The dropout rate. |
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
## Pipe.get_loss {#get_loss tag="method"}
Find the loss and gradient of loss for the batch of documents and their
predicted scores.
> #### Example
>
> ```python
> ner = nlp.add_pipe("ner")
> scores = ner.predict([eg.predicted for eg in examples])
> loss, d_loss = ner.get_loss(examples, scores)
> ```
| Name | Type | Description |
| ----------- | --------------------- | --------------------------------------------------- |
| `examples` | `Iterable[Example]` | The batch of examples. |
| `scores` | | Scores representing the model's predictions. |
| **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
## Pipe.score {#score tag="method" new="3"}
Score a batch of examples.
> #### Example
>
> ```python
> scores = pipe.score(examples)
> ```
| Name | Type | Description |
| ----------- | ------------------- | --------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The examples to score. |
| **RETURNS** | `Dict[str, Any]` | The scores, e.g. produced by the [`Scorer`](/api/scorer). |
## Pipe.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component. Defaults to
[`Adam`](https://thinc.ai/docs/api-optimizers#adam) with default settings.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> optimizer = pipe.create_optimizer()
> ```
| Name | Type | Description |
| ----------- | --------------------------------------------------- | -------------- |
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
## Pipe.add_label {#add_label tag="method"}
Add a new label to the pipe. It's possible to extend pretrained models with new
labels, but care should be taken to avoid the "catastrophic forgetting" problem.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> pipe.add_label("MY_LABEL")
> ```
| Name | Type | Description |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## Pipe.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> with pipe.use_params(optimizer.averages):
> pipe.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## Pipe.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> pipe.to_disk("/path/to/pipe")
> ```
| Name | Type | Description |
| --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
## Pipe.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> pipe.from_disk("/path/to/pipe")
> ```
| Name | Type | Description |
| ----------- | --------------- | -------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Pipe` | The modified pipe. |
## Pipe.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> pipe = nlp.add_pipe("your_custom_pipe")
> pipe_bytes = pipe.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Type | Description |
| ----------- | --------------- | ------------------------------------------------------------------------- |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | bytes | The serialized form of the pipe. |
## Pipe.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> pipe_bytes = pipe.to_bytes()
> pipe = nlp.add_pipe("your_custom_pipe")
> pipe.from_bytes(pipe_bytes)
> ```
| Name | Type | Description |
| ------------ | --------------- | ------------------------------------------------------------------------- |
| `bytes_data` | bytes | The data to load from. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Pipe` | The pipe. |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = pipe.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |

View File

@ -265,19 +265,20 @@ Create an optimizer for the pipeline component.
## SentenceRecognizer.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> senter = nlp.add_pipe("senter")
> with senter.use_params():
> with senter.use_params(optimizer.averages):
> senter.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## SentenceRecognizer.to_disk {#to_disk tag="method"}

View File

@ -263,19 +263,20 @@ Create an optimizer for the pipeline component.
## Tagger.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values.
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> tagger = nlp.add_pipe("tagger")
> with tagger.use_params():
> with tagger.use_params(optimizer.averages):
> tagger.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## Tagger.add_label {#add_label tag="method"}
@ -290,9 +291,10 @@ Add a new label to the pipe.
> ```
| Name | Type | Description |
| -------- | ---------------- | --------------------------------------------------------------- |
| ----------- | ---------------- | --------------------------------------------------------------- |
| `label` | str | The label to add. |
| `values` | `Dict[int, str]` | Optional values to map to the label, e.g. a tag map dictionary. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## Tagger.to_disk {#to_disk tag="method"}

View File

@ -262,7 +262,8 @@ Score a batch of examples.
| Name | Type | Description |
| ---------------- | ------------------- | ---------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The examples to score. | _keyword-only_ | | |
| `examples` | `Iterable[Example]` | The examples to score. |
| _keyword-only_ | | |
| `positive_label` | str | Optional positive label. |
| **RETURNS** | `Dict[str, Any]` | The scores, produced by [`Scorer.score_cats`](/api/scorer#score_cats). |
@ -293,8 +294,9 @@ Add a new label to the pipe.
> ```
| Name | Type | Description |
| ------- | ---- | ----------------- |
| ----------- | ---- | --------------------------------------------------- |
| `label` | str | The label to add. |
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
## TextCategorizer.use_params {#use_params tag="method, contextmanager"}
@ -304,13 +306,13 @@ Modify the pipe's model, to use the given parameter values.
>
> ```python
> textcat = nlp.add_pipe("textcat")
> with textcat.use_params():
> with textcat.use_params(optimizer.averages):
> textcat.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## TextCategorizer.to_disk {#to_disk tag="method"}

View File

@ -8,4 +8,295 @@ api_string_name: tok2vec
api_trainable: true
---
TODO:
<!-- TODO: intro describing component -->
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures) documentation for details on the
architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
> config = {"model": DEFAULT_TOK2VEC_MODEL}
> nlp.add_pipe("tok2vec", config=config)
> ```
| Setting | Type | Description | Default |
| ------- | ------------------------------------------ | ----------------- | ----------------------------------------------- |
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model to use. | [HashEmbedCNN](/api/architectures#HashEmbedCNN) |
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/tok2vec.py
```
## Tok2Vec.\_\_init\_\_ {#init tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> tok2vec = nlp.add_pipe("tok2vec")
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_tok2vec"}}
> parser = nlp.add_pipe("tok2vec", config=config)
>
> # Construction from class
> from spacy.pipeline import Tok2Vec
> tok2vec = Tok2Vec(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe).
| Name | Type | Description |
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The shared vocabulary. |
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
## Tok2Vec.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/tok2vec#call) and [`pipe`](/api/tok2vec#pipe) delegate to the
[`predict`](/api/tok2vec#predict) and
[`set_annotations`](/api/tok2vec#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> tok2vec = nlp.add_pipe("tok2vec")
> # This usually happens under the hood
> processed = tok2vec(doc)
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------ |
| `doc` | `Doc` | The document to process. |
| **RETURNS** | `Doc` | The processed document. |
## Tok2Vec.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/tok2vec#call) and
[`pipe`](/api/tok2vec#pipe) delegate to the [`predict`](/api/tok2vec#predict)
and [`set_annotations`](/api/tok2vec#set_annotations) methods.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> for doc in tok2vec.pipe(docs, batch_size=50):
> pass
> ```
| Name | Type | Description |
| -------------- | --------------- | ----------------------------------------------------- |
| `stream` | `Iterable[Doc]` | A stream of documents. |
| _keyword-only_ | | |
| `batch_size` | int | The number of documents to buffer. Defaults to `128`. |
| **YIELDS** | `Doc` | The processed documents in order. |
## Tok2Vec.begin_training {#begin_training tag="method"}
Initialize the pipe for training, using data examples if available. Return an
[`Optimizer`](https://thinc.ai/docs/api-optimizers) object.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> optimizer = tok2vec.begin_training(pipeline=nlp.pipeline)
> ```
| Name | Type | Description |
| -------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
| _keyword-only_ | | |
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/tok2vec#create_optimizer) if not set. |
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
## Tok2Vec.predict {#predict tag="method"}
Apply the pipeline's model to a batch of docs, without modifying them.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> scores = tok2vec.predict([doc1, doc2])
> ```
| Name | Type | Description |
| ----------- | --------------- | ----------------------------------------- |
| `docs` | `Iterable[Doc]` | The documents to predict. |
| **RETURNS** | - | The model's prediction for each document. |
## Tok2Vec.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, using pre-computed scores.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> scores = tok2vec.predict(docs)
> tok2vec.set_annotations(docs, scores)
> ```
| Name | Type | Description |
| -------- | --------------- | ------------------------------------------------- |
| `docs` | `Iterable[Doc]` | The documents to modify. |
| `scores` | - | The scores to set, produced by `Tok2Vec.predict`. |
## Tok2Vec.update {#update tag="method"}
Learn from a batch of documents and gold-standard information, updating the
pipe's model. Delegates to [`predict`](/api/tok2vec#predict).
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> optimizer = nlp.begin_training()
> losses = tok2vec.update(examples, sgd=optimizer)
> ```
| Name | Type | Description |
| ----------------- | --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
| _keyword-only_ | | |
| `drop` | float | The dropout rate. |
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/tok2vec#set_annotations). |
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
## Tok2Vec.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> optimizer = tok2vec.create_optimizer()
> ```
| Name | Type | Description |
| ----------- | --------------------------------------------------- | -------------- |
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
## Tok2Vec.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> with tok2vec.use_params(optimizer.averages):
> tok2vec.to_disk("/best_model")
> ```
| Name | Type | Description |
| -------- | ---- | ----------------------------------------- |
| `params` | dict | The parameter values to use in the model. |
## Tok2Vec.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> tok2vec.to_disk("/path/to/tok2vec")
> ```
| Name | Type | Description |
| --------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
## Tok2Vec.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> tok2vec.from_disk("/path/to/tok2vec")
> ```
| Name | Type | Description |
| ----------- | --------------- | -------------------------------------------------------------------------- |
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Tok2Vec` | The modified `Tok2Vec` object. |
## Tok2Vec.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> tok2vec_bytes = tok2vec.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Type | Description |
| ----------- | --------------- | ------------------------------------------------------------------------- |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | bytes | The serialized form of the `Tok2Vec` object. |
## Tok2Vec.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> tok2vec_bytes = tok2vec.to_bytes()
> tok2vec = nlp.add_pipe("tok2vec")
> tok2vec.from_bytes(tok2vec_bytes)
> ```
| Name | Type | Description |
| ------------ | --------------- | ------------------------------------------------------------------------- |
| `bytes_data` | bytes | The data to load from. |
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Tok2Vec` | The `Tok2Vec` object. |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = tok2vec.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |