mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Fix handling of score_weights
This commit is contained in:
parent
e2ffe51fb5
commit
ae51f580c1
|
@ -317,21 +317,3 @@ start = 100
|
|||
stop = 1000
|
||||
compound = 1.001
|
||||
{% endif %}
|
||||
|
||||
[training.score_weights]
|
||||
{%- if "tagger" in components %}
|
||||
tag_acc = {{ (1.0 / components|length)|round(2) }}
|
||||
{%- endif -%}
|
||||
{%- if "parser" in components %}
|
||||
dep_uas = 0.0
|
||||
dep_las = {{ (1.0 / components|length)|round(2) }}
|
||||
sents_f = 0.0
|
||||
{%- endif %}
|
||||
{%- if "ner" in components %}
|
||||
ents_f = {{ (1.0 / components|length)|round(2) }}
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
{%- endif %}
|
||||
{%- if "textcat" in components %}
|
||||
cats_score = {{ (1.0 / components|length)|round(2) }}
|
||||
{%- endif -%}
|
||||
|
|
|
@ -209,6 +209,8 @@ def create_train_batches(iterator, batcher, max_epochs: int):
|
|||
def create_evaluation_callback(
|
||||
nlp: Language, dev_corpus: Callable, weights: Dict[str, float]
|
||||
) -> Callable[[], Tuple[float, Dict[str, float]]]:
|
||||
weights = {key: value for key, value in weights.items() if value is not None}
|
||||
|
||||
def evaluate() -> Tuple[float, Dict[str, float]]:
|
||||
dev_examples = list(dev_corpus(nlp))
|
||||
scores = nlp.evaluate(dev_examples)
|
||||
|
@ -368,7 +370,8 @@ def update_meta(
|
|||
) -> None:
|
||||
nlp.meta["performance"] = {}
|
||||
for metric in training["score_weights"]:
|
||||
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
|
||||
if metric is not None:
|
||||
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
|
||||
for pipe_name in nlp.pipe_names:
|
||||
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
|
||||
|
||||
|
|
|
@ -25,7 +25,6 @@ class Bengali(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -30,7 +30,6 @@ class Greek(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -29,7 +29,6 @@ class English(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -28,7 +28,6 @@ class Persian(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -33,7 +33,6 @@ class French(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -28,7 +28,6 @@ class Norwegian(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -30,7 +30,6 @@ class Dutch(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -35,7 +35,6 @@ class Polish(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "pos_lookup", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -25,7 +25,6 @@ class Russian(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -31,7 +31,6 @@ class Swedish(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "rule", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -25,7 +25,6 @@ class Ukrainian(Language):
|
|||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={"model": None, "mode": "pymorphy2", "lookups": None},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -248,9 +248,15 @@ class Language:
|
|||
self._config["nlp"]["pipeline"] = list(self.component_names)
|
||||
self._config["nlp"]["disabled"] = list(self.disabled)
|
||||
self._config["components"] = pipeline
|
||||
if not self._config["training"].get("score_weights"):
|
||||
combined_score_weights = combine_score_weights(score_weights)
|
||||
self._config["training"]["score_weights"] = combined_score_weights
|
||||
# We're merging the existing score weights back into the combined
|
||||
# weights to make sure we're preserving custom settings in the config
|
||||
# but also reflect updates (e.g. new components added)
|
||||
prev_score_weights = self._config["training"].get("score_weights", {})
|
||||
combined_score_weights = combine_score_weights(score_weights)
|
||||
combined_score_weights.update(prev_score_weights)
|
||||
# Combine the scores a second time to normalize them
|
||||
combined_score_weights = combine_score_weights([combined_score_weights])
|
||||
self._config["training"]["score_weights"] = combined_score_weights
|
||||
if not srsly.is_json_serializable(self._config):
|
||||
raise ValueError(Errors.E961.format(config=self._config))
|
||||
return self._config
|
||||
|
@ -412,7 +418,6 @@ class Language:
|
|||
assigns: Iterable[str] = SimpleFrozenList(),
|
||||
requires: Iterable[str] = SimpleFrozenList(),
|
||||
retokenizes: bool = False,
|
||||
scores: Iterable[str] = SimpleFrozenList(),
|
||||
default_score_weights: Dict[str, float] = SimpleFrozenDict(),
|
||||
func: Optional[Callable] = None,
|
||||
) -> Callable:
|
||||
|
@ -430,12 +435,11 @@ class Language:
|
|||
e.g. "token.ent_id". Used for pipeline analyis.
|
||||
retokenizes (bool): Whether the component changes the tokenization.
|
||||
Used for pipeline analysis.
|
||||
scores (Iterable[str]): All scores set by the component if it's trainable,
|
||||
e.g. ["ents_f", "ents_r", "ents_p"].
|
||||
default_score_weights (Dict[str, float]): The scores to report during
|
||||
training, and their default weight towards the final score used to
|
||||
select the best model. Weights should sum to 1.0 per component and
|
||||
will be combined and normalized for the whole pipeline.
|
||||
will be combined and normalized for the whole pipeline. If None,
|
||||
the score won't be shown in the logs or be weighted.
|
||||
func (Optional[Callable]): Factory function if not used as a decorator.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/language#factory
|
||||
|
@ -475,7 +479,7 @@ class Language:
|
|||
default_config=default_config,
|
||||
assigns=validate_attrs(assigns),
|
||||
requires=validate_attrs(requires),
|
||||
scores=scores,
|
||||
scores=list(default_score_weights.keys()),
|
||||
default_score_weights=default_score_weights,
|
||||
retokenizes=retokenizes,
|
||||
)
|
||||
|
|
|
@ -43,8 +43,14 @@ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
},
|
||||
scores=["dep_uas", "dep_las", "dep_las_per_type", "sents_p", "sents_r", "sents_f"],
|
||||
default_score_weights={"dep_uas": 0.5, "dep_las": 0.5, "sents_f": 0.0},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)
|
||||
def make_parser(
|
||||
nlp: Language,
|
||||
|
|
|
@ -25,8 +25,12 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
|
|||
"overwrite_ents": False,
|
||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||
},
|
||||
scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
|
|
|
@ -21,7 +21,6 @@ from .. import util
|
|||
"lookups": None,
|
||||
"overwrite": False,
|
||||
},
|
||||
scores=["lemma_acc"],
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
|
|
|
@ -49,8 +49,7 @@ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={"model": DEFAULT_MORPH_MODEL},
|
||||
scores=["pos_acc", "morph_acc", "morph_per_feat"],
|
||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5},
|
||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
|
||||
)
|
||||
def make_morphologizer(
|
||||
nlp: Language,
|
||||
|
|
|
@ -39,8 +39,7 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
},
|
||||
scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
|
||||
)
|
||||
def make_ner(
|
||||
|
|
|
@ -15,7 +15,6 @@ from .. import util
|
|||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
default_config={"punct_chars": None},
|
||||
scores=["sents_p", "sents_r", "sents_f"],
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_sentencizer(
|
||||
|
|
|
@ -36,7 +36,6 @@ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"senter",
|
||||
assigns=["token.is_sent_start"],
|
||||
default_config={"model": DEFAULT_SENTER_MODEL},
|
||||
scores=["sents_p", "sents_r", "sents_f"],
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_senter(nlp: Language, name: str, model: Model):
|
||||
|
|
|
@ -42,7 +42,6 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL},
|
||||
scores=["tag_acc"],
|
||||
default_score_weights={"tag_acc": 1.0},
|
||||
)
|
||||
def make_tagger(nlp: Language, name: str, model: Model):
|
||||
|
|
|
@ -62,18 +62,17 @@ subword_features = true
|
|||
"positive_label": None,
|
||||
"model": DEFAULT_TEXTCAT_MODEL,
|
||||
},
|
||||
scores=[
|
||||
"cats_score",
|
||||
"cats_score_desc",
|
||||
"cats_p",
|
||||
"cats_r",
|
||||
"cats_f",
|
||||
"cats_macro_f",
|
||||
"cats_macro_auc",
|
||||
"cats_f_per_type",
|
||||
"cats_macro_auc_per_type",
|
||||
],
|
||||
default_score_weights={"cats_score": 1.0},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_p": None,
|
||||
"cats_r": None,
|
||||
"cats_f": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
"cats_macro_auc_per_type": None,
|
||||
},
|
||||
)
|
||||
def make_textcat(
|
||||
nlp: Language,
|
||||
|
|
|
@ -211,7 +211,7 @@ class ConfigSchemaTraining(BaseModel):
|
|||
seed: Optional[StrictInt] = Field(..., title="Random seed")
|
||||
gpu_allocator: Optional[StrictStr] = Field(..., title="Memory allocator when running on GPU")
|
||||
accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps")
|
||||
score_weights: Dict[StrictStr, Union[StrictFloat, StrictInt]] = Field(..., title="Scores to report and their weights for selecting final model")
|
||||
score_weights: Dict[StrictStr, Optional[Union[StrictFloat, StrictInt]]] = Field(..., title="Scores to report and their weights for selecting final model")
|
||||
init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights")
|
||||
raw_text: Optional[StrictStr] = Field(default=None, title="Raw text")
|
||||
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
||||
|
|
|
@ -359,12 +359,8 @@ def test_language_factories_scores():
|
|||
func = lambda nlp, name: lambda doc: doc
|
||||
weights1 = {"a1": 0.5, "a2": 0.5}
|
||||
weights2 = {"b1": 0.2, "b2": 0.7, "b3": 0.1}
|
||||
Language.factory(
|
||||
f"{name}1", scores=list(weights1), default_score_weights=weights1, func=func,
|
||||
)
|
||||
Language.factory(
|
||||
f"{name}2", scores=list(weights2), default_score_weights=weights2, func=func,
|
||||
)
|
||||
Language.factory(f"{name}1", default_score_weights=weights1, func=func)
|
||||
Language.factory(f"{name}2", default_score_weights=weights2, func=func)
|
||||
meta1 = Language.get_factory_meta(f"{name}1")
|
||||
assert meta1.default_score_weights == weights1
|
||||
meta2 = Language.get_factory_meta(f"{name}2")
|
||||
|
@ -376,6 +372,21 @@ def test_language_factories_scores():
|
|||
cfg = nlp.config["training"]
|
||||
expected_weights = {"a1": 0.25, "a2": 0.25, "b1": 0.1, "b2": 0.35, "b3": 0.05}
|
||||
assert cfg["score_weights"] == expected_weights
|
||||
# Test with custom defaults
|
||||
config = nlp.config.copy()
|
||||
config["training"]["score_weights"]["a1"] = 0.0
|
||||
config["training"]["score_weights"]["b3"] = 1.0
|
||||
nlp = English.from_config(config)
|
||||
score_weights = nlp.config["training"]["score_weights"]
|
||||
expected = {"a1": 0.0, "a2": 0.15, "b1": 0.06, "b2": 0.21, "b3": 0.59}
|
||||
assert score_weights == expected
|
||||
# Test with null values
|
||||
config = nlp.config.copy()
|
||||
config["training"]["score_weights"]["a1"] = None
|
||||
nlp = English.from_config(config)
|
||||
score_weights = nlp.config["training"]["score_weights"]
|
||||
expected = {"a1": None, "a2": 0.15, "b1": 0.06, "b2": 0.21, "b3": 0.58} # rounding :(
|
||||
assert score_weights == expected
|
||||
|
||||
|
||||
def test_pipe_factories_from_source():
|
||||
|
|
|
@ -1209,8 +1209,19 @@ def combine_score_weights(weights: List[Dict[str, float]]) -> Dict[str, float]:
|
|||
weights (List[dict]): The weights defined by the components.
|
||||
RETURNS (Dict[str, float]): The combined and normalized weights.
|
||||
"""
|
||||
# We first need to extract all None/null values for score weights that
|
||||
# shouldn't be shown in the table *or* be weighted
|
||||
result = {}
|
||||
all_weights = []
|
||||
for w_dict in weights:
|
||||
filtered_weights = {}
|
||||
for key, value in w_dict.items():
|
||||
if value is None:
|
||||
result[key] = None
|
||||
else:
|
||||
filtered_weights[key] = value
|
||||
all_weights.append(filtered_weights)
|
||||
for w_dict in all_weights:
|
||||
# We need to account for weights that don't sum to 1.0 and normalize
|
||||
# the score weights accordingly, then divide score by the number of
|
||||
# components.
|
||||
|
|
|
@ -145,17 +145,16 @@ examples, see the
|
|||
> )
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `name` | The name of the component factory. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
|
||||
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
|
||||
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. ~~Dict[str, float]~~ |
|
||||
| `func` | Optional function if not used a a decorator. ~~Optional[Callable[[...], Callable[[Doc], Doc]]]~~ |
|
||||
| Name | Description |
|
||||
| ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `name` | The name of the component factory. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
|
||||
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
|
||||
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ |
|
||||
| `func` | Optional function if not used a a decorator. ~~Optional[Callable[[...], Callable[[Doc], Doc]]]~~ |
|
||||
|
||||
## Language.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
@ -1036,12 +1035,12 @@ provided by the [`@Language.component`](/api/language#component) or
|
|||
component is defined and stored on the `Language` class for each component
|
||||
instance and factory instance.
|
||||
|
||||
| Name | Description |
|
||||
| ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `factory` | The name of the registered component factory. ~~str~~ |
|
||||
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
|
||||
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
|
||||
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| ----------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `factory` | The name of the registered component factory. ~~str~~ |
|
||||
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
|
||||
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
|
||||
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ |
|
||||
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Based on the `default_score_weights` and used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
|
||||
|
|
|
@ -470,6 +470,7 @@ score.
|
|||
```ini
|
||||
[training.score_weights]
|
||||
dep_las = 0.4
|
||||
dep_uas = null
|
||||
ents_f = 0.4
|
||||
tag_acc = 0.2
|
||||
token_acc = 0.0
|
||||
|
@ -481,9 +482,9 @@ you generate a config for a given pipeline, the score weights are generated by
|
|||
combining and normalizing the default score weights of the pipeline components.
|
||||
The default score weights are defined by each pipeline component via the
|
||||
`default_score_weights` setting on the
|
||||
[`@Language.component`](/api/language#component) or
|
||||
[`@Language.factory`](/api/language#factory). By default, all pipeline
|
||||
components are weighted equally.
|
||||
[`@Language.factory`](/api/language#factory) decorator. By default, all pipeline
|
||||
components are weighted equally. If a score weight is set to `null`, it will be
|
||||
excluded from the logs and the score won't be weighted.
|
||||
|
||||
<Accordion title="Understanding the training output and score types" spaced>
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user