Make the TrainablePipe.store_activations property a bool

This means that we can also bring back `store_activations` setter.
This commit is contained in:
Daniël de Kok 2022-08-29 16:33:08 +02:00
parent 1cfbb934ed
commit aea53378dc
17 changed files with 81 additions and 144 deletions

View File

@ -65,7 +65,7 @@ def make_edit_tree_lemmatizer(
overwrite: bool,
top_k: int,
scorer: Optional[Callable],
store_activations: Union[bool, List[str]],
store_activations: bool,
):
"""Construct an EditTreeLemmatizer component."""
return EditTreeLemmatizer(
@ -97,7 +97,7 @@ class EditTreeLemmatizer(TrainablePipe):
overwrite: bool = False,
top_k: int = 1,
scorer: Optional[Callable] = lemmatizer_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
):
"""
Construct an edit tree lemmatizer.
@ -109,8 +109,7 @@ class EditTreeLemmatizer(TrainablePipe):
frequency in the training data.
overwrite (bool): overwrite existing lemma annotations.
top_k (int): try to apply at most the k most probable edit trees.
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "probs" and "guesses".
store_activations (bool): store model activations in Doc when annotating.
"""
self.vocab = vocab
self.model = model
@ -125,7 +124,7 @@ class EditTreeLemmatizer(TrainablePipe):
self.cfg: Dict[str, Any] = {"labels": []}
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
def get_loss(
self, examples: Iterable[Example], scores: List[Floats2d]
@ -202,9 +201,10 @@ class EditTreeLemmatizer(TrainablePipe):
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
batch_tree_ids = activations["guesses"]
for i, doc in enumerate(docs):
doc.activations[self.name] = {}
for activation in self.store_activations:
doc.activations[self.name][activation] = activations[activation][i]
if self.store_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
doc_tree_ids = batch_tree_ids[i]
if hasattr(doc_tree_ids, "get"):
doc_tree_ids = doc_tree_ids.get()

View File

@ -85,7 +85,7 @@ def make_entity_linker(
scorer: Optional[Callable],
use_gold_ents: bool,
threshold: Optional[float] = None,
store_activations: Union[bool, List[str]],
store_activations: bool,
):
"""Construct an EntityLinker component.
@ -104,8 +104,7 @@ def make_entity_linker(
component must provide entity annotations.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
prediction is discarded. If None, predictions are not filtered by any threshold.
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "ents" and "scores".
store_activations (bool): store model activations in Doc when annotating.
"""
if not model.attrs.get("include_span_maker", False):
@ -174,7 +173,7 @@ class EntityLinker(TrainablePipe):
scorer: Optional[Callable] = entity_linker_score,
use_gold_ents: bool,
threshold: Optional[float] = None,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
) -> None:
"""Initialize an entity linker.
@ -223,7 +222,7 @@ class EntityLinker(TrainablePipe):
self.scorer = scorer
self.use_gold_ents = use_gold_ents
self.threshold = threshold
self.set_store_activations(store_activations)
self.store_activations = store_activations
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
"""Define the KB of this pipe by providing a function that will
@ -551,12 +550,13 @@ class EntityLinker(TrainablePipe):
i = 0
overwrite = self.cfg["overwrite"]
for j, doc in enumerate(docs):
doc.activations[self.name] = {}
for activation in self.store_activations:
# We only copy activations that are Ragged.
doc.activations[self.name][activation] = cast(
Ragged, activations[activation][j]
)
if self.store_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
if act_name != "kb_ids":
# We only copy activations that are Ragged.
doc.activations[self.name][act_name] = cast(Ragged, acts[j])
for ent in doc.ents:
kb_id = kb_ids[i]
i += 1
@ -668,7 +668,7 @@ class EntityLinker(TrainablePipe):
doc_scores: List[Floats1d],
doc_ents: List[Ints1d],
):
if len(self.store_activations) == 0:
if not self.store_activations:
return
ops = self.model.ops
lengths = ops.asarray1i([s.shape[0] for s in doc_scores])
@ -683,7 +683,7 @@ class EntityLinker(TrainablePipe):
scores: Sequence[float],
ents: Sequence[int],
):
if len(self.store_activations) == 0:
if not self.store_activations:
return
ops = self.model.ops
doc_scores.append(ops.asarray1f(scores))

View File

@ -69,7 +69,7 @@ def make_morphologizer(
overwrite: bool,
extend: bool,
scorer: Optional[Callable],
store_activations: Union[bool, List[str]],
store_activations: bool,
):
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer,
store_activations=store_activations)
@ -104,7 +104,7 @@ class Morphologizer(Tagger):
overwrite: bool = BACKWARD_OVERWRITE,
extend: bool = BACKWARD_EXTEND,
scorer: Optional[Callable] = morphologizer_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
):
"""Initialize a morphologizer.
@ -115,8 +115,7 @@ class Morphologizer(Tagger):
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_token_attr for the attributes "pos" and "morph" and
Scorer.score_token_attr_per_feat for the attribute "morph".
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "probs" and "guesses".
store_activations (bool): store model activations in Doc when annotating.
DOCS: https://spacy.io/api/morphologizer#init
"""
@ -136,7 +135,7 @@ class Morphologizer(Tagger):
}
self.cfg = dict(sorted(cfg.items()))
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def labels(self):
@ -250,9 +249,10 @@ class Morphologizer(Tagger):
# to allocate a compatible container out of the iterable.
labels = tuple(self.labels)
for i, doc in enumerate(docs):
doc.activations[self.name] = {}
for activation in self.store_activations:
doc.activations[self.name][activation] = activations[activation][i]
if self.store_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()

View File

@ -52,7 +52,7 @@ def make_senter(nlp: Language,
model: Model,
overwrite: bool,
scorer: Optional[Callable],
store_activations: Union[bool, List[str]]):
store_activations: bool):
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, store_activations=store_activations)
@ -83,7 +83,7 @@ class SentenceRecognizer(Tagger):
*,
overwrite=BACKWARD_OVERWRITE,
scorer=senter_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
):
"""Initialize a sentence recognizer.
@ -93,8 +93,7 @@ class SentenceRecognizer(Tagger):
losses during training.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the attribute "sents".
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "probs" and "guesses".
store_activations (bool): store model activations in Doc when annotating.
DOCS: https://spacy.io/api/sentencerecognizer#init
"""
@ -104,7 +103,7 @@ class SentenceRecognizer(Tagger):
self._rehearsal_model = None
self.cfg = {"overwrite": overwrite}
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def labels(self):
@ -136,9 +135,10 @@ class SentenceRecognizer(Tagger):
cdef Doc doc
cdef bint overwrite = self.cfg["overwrite"]
for i, doc in enumerate(docs):
doc.activations[self.name] = {}
for activation in self.store_activations:
doc.activations[self.name][activation] = activations[activation][i]
if self.store_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()

View File

@ -120,7 +120,7 @@ def make_spancat(
scorer: Optional[Callable],
threshold: float,
max_positive: Optional[int],
store_activations: Union[bool, List[str]],
store_activations: bool,
) -> "SpanCategorizer":
"""Create a SpanCategorizer component. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
@ -141,8 +141,7 @@ def make_spancat(
0.5.
max_positive (Optional[int]): Maximum number of labels to consider positive
per span. Defaults to None, indicating no limit.
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "indices" and "scores".
store_activations (bool): store model activations in Doc when annotating.
"""
return SpanCategorizer(
nlp.vocab,
@ -192,7 +191,7 @@ class SpanCategorizer(TrainablePipe):
threshold: float = 0.5,
max_positive: Optional[int] = None,
scorer: Optional[Callable] = spancat_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
) -> None:
"""Initialize the span categorizer.
vocab (Vocab): The shared vocabulary.
@ -225,7 +224,7 @@ class SpanCategorizer(TrainablePipe):
self.model = model
self.name = name
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def key(self) -> str:
@ -317,10 +316,9 @@ class SpanCategorizer(TrainablePipe):
offset = 0
for i, doc in enumerate(docs):
indices_i = indices[i].dataXd
doc.activations[self.name] = {}
if "indices" in self.store_activations:
if self.store_activations:
doc.activations[self.name] = {}
doc.activations[self.name]["indices"] = indices_i
if "scores" in self.store_activations:
doc.activations[self.name]["scores"] = scores[
offset : offset + indices.lengths[i]
]

View File

@ -61,7 +61,7 @@ def make_tagger(
overwrite: bool,
scorer: Optional[Callable],
neg_prefix: str,
store_activations: Union[bool, List[str]],
store_activations: bool,
):
"""Construct a part-of-speech tagger component.
@ -97,7 +97,7 @@ class Tagger(TrainablePipe):
overwrite=BACKWARD_OVERWRITE,
scorer=tagger_score,
neg_prefix="!",
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
):
"""Initialize a part-of-speech tagger.
@ -107,8 +107,7 @@ class Tagger(TrainablePipe):
losses during training.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_token_attr for the attribute "tag".
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations are: "probs" and "guesses".
store_activations (bool): store model activations in Doc when annotating.
DOCS: https://spacy.io/api/tagger#init
"""
@ -119,7 +118,7 @@ class Tagger(TrainablePipe):
cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix}
self.cfg = dict(sorted(cfg.items()))
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def labels(self):
@ -183,9 +182,10 @@ class Tagger(TrainablePipe):
cdef bint overwrite = self.cfg["overwrite"]
labels = self.labels
for i, doc in enumerate(docs):
doc.activations[self.name] = {}
for activation in self.store_activations:
doc.activations[self.name][activation] = activations[activation][i]
if self.store_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()

View File

@ -97,7 +97,7 @@ def make_textcat(
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
store_activations: Union[bool, List[str]],
store_activations: bool,
) -> "TextCategorizer":
"""Create a TextCategorizer component. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels are considered
@ -107,8 +107,7 @@ def make_textcat(
scores for each category.
threshold (float): Cutoff to consider a prediction "positive".
scorer (Optional[Callable]): The scoring method.
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations is: "probs".
store_activations (bool): store model activations in Doc when annotating.
"""
return TextCategorizer(
nlp.vocab,
@ -148,7 +147,7 @@ class TextCategorizer(TrainablePipe):
*,
threshold: float,
scorer: Optional[Callable] = textcat_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
) -> None:
"""Initialize a text categorizer for single-label classification.
@ -169,7 +168,7 @@ class TextCategorizer(TrainablePipe):
cfg = {"labels": [], "threshold": threshold, "positive_label": None}
self.cfg = dict(cfg)
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def support_missing_values(self):
@ -224,8 +223,8 @@ class TextCategorizer(TrainablePipe):
"""
probs = activations["probs"]
for i, doc in enumerate(docs):
doc.activations[self.name] = {}
if "probs" in self.store_activations:
if self.store_activations:
doc.activations[self.name] = {}
doc.activations[self.name]["probs"] = probs[i]
for j, label in enumerate(self.labels):
doc.cats[label] = float(probs[i, j])

View File

@ -97,7 +97,7 @@ def make_multilabel_textcat(
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
store_activations: Union[bool, List[str]],
store_activations: bool,
) -> "TextCategorizer":
"""Create a TextCategorizer component. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels are considered
@ -146,7 +146,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
*,
threshold: float,
scorer: Optional[Callable] = textcat_multilabel_score,
store_activations: Union[bool, List[str]] = False,
store_activations: bool = False,
) -> None:
"""Initialize a text categorizer for multi-label classification.
@ -155,8 +155,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Cutoff to consider a prediction "positive".
store_activations (Union[bool, List[str]]): Model activations to store in
Doc when annotating. supported activations is: "probs".
store_activations (bool): store model activations in Doc when annotating.
DOCS: https://spacy.io/api/textcategorizer#init
"""
@ -167,7 +166,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
cfg = {"labels": [], "threshold": threshold}
self.cfg = dict(cfg)
self.scorer = scorer
self.set_store_activations(store_activations)
self.store_activations = store_activations
@property
def support_missing_values(self):

View File

@ -6,4 +6,4 @@ cdef class TrainablePipe(Pipe):
cdef public object model
cdef public object cfg
cdef public object scorer
cdef object _store_activations
cdef bint _store_activations

View File

@ -352,19 +352,6 @@ cdef class TrainablePipe(Pipe):
def store_activations(self):
return self._store_activations
def set_store_activations(self, activations):
known_activations = self.activations
if isinstance(activations, list):
self._store_activations = []
for activation in activations:
if activation in known_activations:
self._store_activations.append(activation)
else:
warnings.warn(Warnings.W400.format(activation=activation, pipe_name=self.name))
elif isinstance(activations, bool):
if activations:
self._store_activations = list(known_activations)
else:
self._store_activations = []
else:
raise ValueError(Errors.E1400)
@store_activations.setter
def store_activations(self, store_activations: bool):
self._store_activations = store_activations

View File

@ -293,15 +293,10 @@ def test_store_activations():
nO = lemmatizer.model.get_dim("nO")
doc = nlp("This is a test.")
assert len(list(doc.activations["trainable_lemmatizer"].keys())) == 0
assert "trainable_lemmatizer" not in doc.activations
lemmatizer.set_store_activations(True)
lemmatizer.store_activations = True
doc = nlp("This is a test.")
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs", "guesses"]
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)
assert doc.activations["trainable_lemmatizer"]["guesses"].shape == (5,)
lemmatizer.set_store_activations(["probs"])
doc = nlp("This is a test.")
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs"]
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)

View File

@ -1225,9 +1225,9 @@ def test_store_activations():
ruler.add_patterns(patterns)
doc = nlp("Russ Cochran was a publisher")
assert len(doc.activations["entity_linker"].keys()) == 0
assert "entity_linker" not in doc.activations
entity_linker.set_store_activations(True)
entity_linker.store_activations = True
doc = nlp("Russ Cochran was a publisher")
assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"}
ents = doc.activations["entity_linker"]["ents"]
@ -1240,12 +1240,3 @@ def test_store_activations():
assert scores.data.shape == (2, 1)
assert scores.data.dtype == "float32"
assert scores.lengths.shape == (1,)
entity_linker.set_store_activations(["scores"])
doc = nlp("Russ Cochran was a publisher")
assert set(doc.activations["entity_linker"].keys()) == {"scores"}
scores = doc.activations["entity_linker"]["scores"]
assert isinstance(scores, Ragged)
assert scores.data.shape == (2, 1)
assert scores.data.dtype == "float32"
assert scores.lengths.shape == (1,)

View File

@ -211,17 +211,11 @@ def test_store_activations():
nlp.initialize(get_examples=lambda: train_examples)
doc = nlp("This is a test.")
assert len(list(doc.activations["morphologizer"].keys())) == 0
assert "morphologizer" not in doc.activations
morphologizer.set_store_activations(True)
morphologizer.store_activations = True
doc = nlp("This is a test.")
assert "morphologizer" in doc.activations
assert set(doc.activations["morphologizer"].keys()) == {"guesses", "probs"}
assert doc.activations["morphologizer"]["probs"].shape == (5, 6)
assert doc.activations["morphologizer"]["guesses"].shape == (5,)
morphologizer.set_store_activations(["probs"])
doc = nlp("This is a test.")
assert "morphologizer" in doc.activations
assert set(doc.activations["morphologizer"].keys()) == {"probs"}
assert doc.activations["morphologizer"]["probs"].shape == (5, 6)

View File

@ -118,17 +118,11 @@ def test_store_activations():
nO = senter.model.get_dim("nO")
doc = nlp("This is a test.")
assert len(list(doc.activations["senter"].keys())) == 0
assert "senter" not in doc.activations
senter.set_store_activations(True)
senter.store_activations = True
doc = nlp("This is a test.")
assert "senter" in doc.activations
assert set(doc.activations["senter"].keys()) == {"guesses", "probs"}
assert doc.activations["senter"]["probs"].shape == (5, nO)
assert doc.activations["senter"]["guesses"].shape == (5,)
senter.set_store_activations(["probs"])
doc = nlp("This is a test.")
assert "senter" in doc.activations
assert set(doc.activations["senter"].keys()) == {"probs"}
assert doc.activations["senter"]["probs"].shape == (5, 2)

View File

@ -432,15 +432,10 @@ def test_store_activations():
assert set(spancat.labels) == {"LOC", "PERSON"}
doc = nlp("This is a test.")
assert len(list(doc.activations["spancat"].keys())) == 0
assert "spancat" not in doc.activations
spancat.set_store_activations(True)
spancat.store_activations = True
doc = nlp("This is a test.")
assert set(doc.activations["spancat"].keys()) == {"indices", "scores"}
assert doc.activations["spancat"]["indices"].shape == (12, 2)
assert doc.activations["spancat"]["scores"].shape == (12, nO)
spancat.set_store_activations(["scores"])
doc = nlp("This is a test.")
assert set(doc.activations["spancat"].keys()) == {"scores"}
assert doc.activations["spancat"]["scores"].shape == (12, nO)

View File

@ -223,20 +223,15 @@ def test_store_activations():
nlp.initialize(get_examples=lambda: train_examples)
doc = nlp("This is a test.")
assert len(list(doc.activations["tagger"].keys())) == 0
assert "tagger" not in doc.activations
tagger.set_store_activations(True)
tagger.store_activations = True
doc = nlp("This is a test.")
assert "tagger" in doc.activations
assert set(doc.activations["tagger"].keys()) == {"guesses", "probs"}
assert doc.activations["tagger"]["probs"].shape == (5, len(TAGS))
assert doc.activations["tagger"]["guesses"].shape == (5,)
tagger.set_store_activations(["probs"])
doc = nlp("This is a test.")
assert set(doc.activations["tagger"].keys()) == {"probs"}
assert doc.activations["tagger"]["probs"].shape == (5, len(TAGS))
def test_tagger_requires_labels():
nlp = English()

View File

@ -886,14 +886,9 @@ def test_store_activations():
nO = textcat.model.get_dim("nO")
doc = nlp("This is a test.")
assert len(list(doc.activations["textcat"].keys())) == 0
assert "textcat" not in doc.activations
textcat.set_store_activations(True)
doc = nlp("This is a test.")
assert list(doc.activations["textcat"].keys()) == ["probs"]
assert doc.activations["textcat"]["probs"].shape == (nO,)
textcat.set_store_activations(["probs"])
textcat.store_activations = True
doc = nlp("This is a test.")
assert list(doc.activations["textcat"].keys()) == ["probs"]
assert doc.activations["textcat"]["probs"].shape == (nO,)
@ -911,14 +906,9 @@ def test_store_activations_multi():
nO = textcat.model.get_dim("nO")
doc = nlp("This is a test.")
assert len(list(doc.activations["textcat_multilabel"].keys())) == 0
assert "textcat_multilabel" not in doc.activations
textcat.set_store_activations(True)
doc = nlp("This is a test.")
assert list(doc.activations["textcat_multilabel"].keys()) == ["probs"]
assert doc.activations["textcat_multilabel"]["probs"].shape == (nO,)
textcat.set_store_activations(["probs"])
textcat.store_activations = True
doc = nlp("This is a test.")
assert list(doc.activations["textcat_multilabel"].keys()) == ["probs"]
assert doc.activations["textcat_multilabel"]["probs"].shape == (nO,)