mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 12:56:29 +03:00
Make the TrainablePipe.store_activations
property a bool
This means that we can also bring back `store_activations` setter.
This commit is contained in:
parent
1cfbb934ed
commit
aea53378dc
|
@ -65,7 +65,7 @@ def make_edit_tree_lemmatizer(
|
|||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
):
|
||||
"""Construct an EditTreeLemmatizer component."""
|
||||
return EditTreeLemmatizer(
|
||||
|
@ -97,7 +97,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
overwrite: bool = False,
|
||||
top_k: int = 1,
|
||||
scorer: Optional[Callable] = lemmatizer_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
):
|
||||
"""
|
||||
Construct an edit tree lemmatizer.
|
||||
|
@ -109,8 +109,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
frequency in the training data.
|
||||
overwrite (bool): overwrite existing lemma annotations.
|
||||
top_k (int): try to apply at most the k most probable edit trees.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
@ -125,7 +124,7 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
|
||||
self.cfg: Dict[str, Any] = {"labels": []}
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
def get_loss(
|
||||
self, examples: Iterable[Example], scores: List[Floats2d]
|
||||
|
@ -202,9 +201,10 @@ class EditTreeLemmatizer(TrainablePipe):
|
|||
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
|
||||
batch_tree_ids = activations["guesses"]
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
doc.activations[self.name][activation] = activations[activation][i]
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tree_ids = batch_tree_ids[i]
|
||||
if hasattr(doc_tree_ids, "get"):
|
||||
doc_tree_ids = doc_tree_ids.get()
|
||||
|
|
|
@ -85,7 +85,7 @@ def make_entity_linker(
|
|||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
threshold: Optional[float] = None,
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
):
|
||||
"""Construct an EntityLinker component.
|
||||
|
||||
|
@ -104,8 +104,7 @@ def make_entity_linker(
|
|||
component must provide entity annotations.
|
||||
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
|
||||
prediction is discarded. If None, predictions are not filtered by any threshold.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "ents" and "scores".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
"""
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
|
@ -174,7 +173,7 @@ class EntityLinker(TrainablePipe):
|
|||
scorer: Optional[Callable] = entity_linker_score,
|
||||
use_gold_ents: bool,
|
||||
threshold: Optional[float] = None,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize an entity linker.
|
||||
|
||||
|
@ -223,7 +222,7 @@ class EntityLinker(TrainablePipe):
|
|||
self.scorer = scorer
|
||||
self.use_gold_ents = use_gold_ents
|
||||
self.threshold = threshold
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
|
||||
"""Define the KB of this pipe by providing a function that will
|
||||
|
@ -551,12 +550,13 @@ class EntityLinker(TrainablePipe):
|
|||
i = 0
|
||||
overwrite = self.cfg["overwrite"]
|
||||
for j, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
# We only copy activations that are Ragged.
|
||||
doc.activations[self.name][activation] = cast(
|
||||
Ragged, activations[activation][j]
|
||||
)
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
if act_name != "kb_ids":
|
||||
# We only copy activations that are Ragged.
|
||||
doc.activations[self.name][act_name] = cast(Ragged, acts[j])
|
||||
|
||||
for ent in doc.ents:
|
||||
kb_id = kb_ids[i]
|
||||
i += 1
|
||||
|
@ -668,7 +668,7 @@ class EntityLinker(TrainablePipe):
|
|||
doc_scores: List[Floats1d],
|
||||
doc_ents: List[Ints1d],
|
||||
):
|
||||
if len(self.store_activations) == 0:
|
||||
if not self.store_activations:
|
||||
return
|
||||
ops = self.model.ops
|
||||
lengths = ops.asarray1i([s.shape[0] for s in doc_scores])
|
||||
|
@ -683,7 +683,7 @@ class EntityLinker(TrainablePipe):
|
|||
scores: Sequence[float],
|
||||
ents: Sequence[int],
|
||||
):
|
||||
if len(self.store_activations) == 0:
|
||||
if not self.store_activations:
|
||||
return
|
||||
ops = self.model.ops
|
||||
doc_scores.append(ops.asarray1f(scores))
|
||||
|
|
|
@ -69,7 +69,7 @@ def make_morphologizer(
|
|||
overwrite: bool,
|
||||
extend: bool,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
):
|
||||
return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer,
|
||||
store_activations=store_activations)
|
||||
|
@ -104,7 +104,7 @@ class Morphologizer(Tagger):
|
|||
overwrite: bool = BACKWARD_OVERWRITE,
|
||||
extend: bool = BACKWARD_EXTEND,
|
||||
scorer: Optional[Callable] = morphologizer_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
):
|
||||
"""Initialize a morphologizer.
|
||||
|
||||
|
@ -115,8 +115,7 @@ class Morphologizer(Tagger):
|
|||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attributes "pos" and "morph" and
|
||||
Scorer.score_token_attr_per_feat for the attribute "morph".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/morphologizer#init
|
||||
"""
|
||||
|
@ -136,7 +135,7 @@ class Morphologizer(Tagger):
|
|||
}
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -250,9 +249,10 @@ class Morphologizer(Tagger):
|
|||
# to allocate a compatible container out of the iterable.
|
||||
labels = tuple(self.labels)
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
doc.activations[self.name][activation] = activations[activation][i]
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -52,7 +52,7 @@ def make_senter(nlp: Language,
|
|||
model: Model,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]]):
|
||||
store_activations: bool):
|
||||
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, store_activations=store_activations)
|
||||
|
||||
|
||||
|
@ -83,7 +83,7 @@ class SentenceRecognizer(Tagger):
|
|||
*,
|
||||
overwrite=BACKWARD_OVERWRITE,
|
||||
scorer=senter_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
):
|
||||
"""Initialize a sentence recognizer.
|
||||
|
||||
|
@ -93,8 +93,7 @@ class SentenceRecognizer(Tagger):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_spans for the attribute "sents".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#init
|
||||
"""
|
||||
|
@ -104,7 +103,7 @@ class SentenceRecognizer(Tagger):
|
|||
self._rehearsal_model = None
|
||||
self.cfg = {"overwrite": overwrite}
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -136,9 +135,10 @@ class SentenceRecognizer(Tagger):
|
|||
cdef Doc doc
|
||||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
doc.activations[self.name][activation] = activations[activation][i]
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -120,7 +120,7 @@ def make_spancat(
|
|||
scorer: Optional[Callable],
|
||||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
) -> "SpanCategorizer":
|
||||
"""Create a SpanCategorizer component. The span categorizer consists of two
|
||||
parts: a suggester function that proposes candidate spans, and a labeller
|
||||
|
@ -141,8 +141,7 @@ def make_spancat(
|
|||
0.5.
|
||||
max_positive (Optional[int]): Maximum number of labels to consider positive
|
||||
per span. Defaults to None, indicating no limit.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "indices" and "scores".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
"""
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
|
@ -192,7 +191,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
threshold: float = 0.5,
|
||||
max_positive: Optional[int] = None,
|
||||
scorer: Optional[Callable] = spancat_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize the span categorizer.
|
||||
vocab (Vocab): The shared vocabulary.
|
||||
|
@ -225,7 +224,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
self.model = model
|
||||
self.name = name
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
|
@ -317,10 +316,9 @@ class SpanCategorizer(TrainablePipe):
|
|||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
indices_i = indices[i].dataXd
|
||||
doc.activations[self.name] = {}
|
||||
if "indices" in self.store_activations:
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
doc.activations[self.name]["indices"] = indices_i
|
||||
if "scores" in self.store_activations:
|
||||
doc.activations[self.name]["scores"] = scores[
|
||||
offset : offset + indices.lengths[i]
|
||||
]
|
||||
|
|
|
@ -61,7 +61,7 @@ def make_tagger(
|
|||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
neg_prefix: str,
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
):
|
||||
"""Construct a part-of-speech tagger component.
|
||||
|
||||
|
@ -97,7 +97,7 @@ class Tagger(TrainablePipe):
|
|||
overwrite=BACKWARD_OVERWRITE,
|
||||
scorer=tagger_score,
|
||||
neg_prefix="!",
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
):
|
||||
"""Initialize a part-of-speech tagger.
|
||||
|
||||
|
@ -107,8 +107,7 @@ class Tagger(TrainablePipe):
|
|||
losses during training.
|
||||
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||
Scorer.score_token_attr for the attribute "tag".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations are: "probs" and "guesses".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/tagger#init
|
||||
"""
|
||||
|
@ -119,7 +118,7 @@ class Tagger(TrainablePipe):
|
|||
cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix}
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -183,9 +182,10 @@ class Tagger(TrainablePipe):
|
|||
cdef bint overwrite = self.cfg["overwrite"]
|
||||
labels = self.labels
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
for activation in self.store_activations:
|
||||
doc.activations[self.name][activation] = activations[activation][i]
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
for act_name, acts in activations.items():
|
||||
doc.activations[self.name][act_name] = acts[i]
|
||||
doc_tag_ids = batch_tag_ids[i]
|
||||
if hasattr(doc_tag_ids, "get"):
|
||||
doc_tag_ids = doc_tag_ids.get()
|
||||
|
|
|
@ -97,7 +97,7 @@ def make_textcat(
|
|||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
|
@ -107,8 +107,7 @@ def make_textcat(
|
|||
scores for each category.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
scorer (Optional[Callable]): The scoring method.
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations is: "probs".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
"""
|
||||
return TextCategorizer(
|
||||
nlp.vocab,
|
||||
|
@ -148,7 +147,7 @@ class TextCategorizer(TrainablePipe):
|
|||
*,
|
||||
threshold: float,
|
||||
scorer: Optional[Callable] = textcat_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a text categorizer for single-label classification.
|
||||
|
||||
|
@ -169,7 +168,7 @@ class TextCategorizer(TrainablePipe):
|
|||
cfg = {"labels": [], "threshold": threshold, "positive_label": None}
|
||||
self.cfg = dict(cfg)
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def support_missing_values(self):
|
||||
|
@ -224,8 +223,8 @@ class TextCategorizer(TrainablePipe):
|
|||
"""
|
||||
probs = activations["probs"]
|
||||
for i, doc in enumerate(docs):
|
||||
doc.activations[self.name] = {}
|
||||
if "probs" in self.store_activations:
|
||||
if self.store_activations:
|
||||
doc.activations[self.name] = {}
|
||||
doc.activations[self.name]["probs"] = probs[i]
|
||||
for j, label in enumerate(self.labels):
|
||||
doc.cats[label] = float(probs[i, j])
|
||||
|
|
|
@ -97,7 +97,7 @@ def make_multilabel_textcat(
|
|||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
store_activations: Union[bool, List[str]],
|
||||
store_activations: bool,
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
|
@ -146,7 +146,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
*,
|
||||
threshold: float,
|
||||
scorer: Optional[Callable] = textcat_multilabel_score,
|
||||
store_activations: Union[bool, List[str]] = False,
|
||||
store_activations: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a text categorizer for multi-label classification.
|
||||
|
||||
|
@ -155,8 +155,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
name (str): The component instance name, used to add entries to the
|
||||
losses during training.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
store_activations (Union[bool, List[str]]): Model activations to store in
|
||||
Doc when annotating. supported activations is: "probs".
|
||||
store_activations (bool): store model activations in Doc when annotating.
|
||||
|
||||
DOCS: https://spacy.io/api/textcategorizer#init
|
||||
"""
|
||||
|
@ -167,7 +166,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
cfg = {"labels": [], "threshold": threshold}
|
||||
self.cfg = dict(cfg)
|
||||
self.scorer = scorer
|
||||
self.set_store_activations(store_activations)
|
||||
self.store_activations = store_activations
|
||||
|
||||
@property
|
||||
def support_missing_values(self):
|
||||
|
|
|
@ -6,4 +6,4 @@ cdef class TrainablePipe(Pipe):
|
|||
cdef public object model
|
||||
cdef public object cfg
|
||||
cdef public object scorer
|
||||
cdef object _store_activations
|
||||
cdef bint _store_activations
|
||||
|
|
|
@ -352,19 +352,6 @@ cdef class TrainablePipe(Pipe):
|
|||
def store_activations(self):
|
||||
return self._store_activations
|
||||
|
||||
def set_store_activations(self, activations):
|
||||
known_activations = self.activations
|
||||
if isinstance(activations, list):
|
||||
self._store_activations = []
|
||||
for activation in activations:
|
||||
if activation in known_activations:
|
||||
self._store_activations.append(activation)
|
||||
else:
|
||||
warnings.warn(Warnings.W400.format(activation=activation, pipe_name=self.name))
|
||||
elif isinstance(activations, bool):
|
||||
if activations:
|
||||
self._store_activations = list(known_activations)
|
||||
else:
|
||||
self._store_activations = []
|
||||
else:
|
||||
raise ValueError(Errors.E1400)
|
||||
@store_activations.setter
|
||||
def store_activations(self, store_activations: bool):
|
||||
self._store_activations = store_activations
|
||||
|
|
|
@ -293,15 +293,10 @@ def test_store_activations():
|
|||
nO = lemmatizer.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["trainable_lemmatizer"].keys())) == 0
|
||||
assert "trainable_lemmatizer" not in doc.activations
|
||||
|
||||
lemmatizer.set_store_activations(True)
|
||||
lemmatizer.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs", "guesses"]
|
||||
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)
|
||||
assert doc.activations["trainable_lemmatizer"]["guesses"].shape == (5,)
|
||||
|
||||
lemmatizer.set_store_activations(["probs"])
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["trainable_lemmatizer"].keys()) == ["probs"]
|
||||
assert doc.activations["trainable_lemmatizer"]["probs"].shape == (5, nO)
|
||||
|
|
|
@ -1225,9 +1225,9 @@ def test_store_activations():
|
|||
ruler.add_patterns(patterns)
|
||||
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert len(doc.activations["entity_linker"].keys()) == 0
|
||||
assert "entity_linker" not in doc.activations
|
||||
|
||||
entity_linker.set_store_activations(True)
|
||||
entity_linker.store_activations = True
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert set(doc.activations["entity_linker"].keys()) == {"ents", "scores"}
|
||||
ents = doc.activations["entity_linker"]["ents"]
|
||||
|
@ -1240,12 +1240,3 @@ def test_store_activations():
|
|||
assert scores.data.shape == (2, 1)
|
||||
assert scores.data.dtype == "float32"
|
||||
assert scores.lengths.shape == (1,)
|
||||
|
||||
entity_linker.set_store_activations(["scores"])
|
||||
doc = nlp("Russ Cochran was a publisher")
|
||||
assert set(doc.activations["entity_linker"].keys()) == {"scores"}
|
||||
scores = doc.activations["entity_linker"]["scores"]
|
||||
assert isinstance(scores, Ragged)
|
||||
assert scores.data.shape == (2, 1)
|
||||
assert scores.data.dtype == "float32"
|
||||
assert scores.lengths.shape == (1,)
|
||||
|
|
|
@ -211,17 +211,11 @@ def test_store_activations():
|
|||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["morphologizer"].keys())) == 0
|
||||
assert "morphologizer" not in doc.activations
|
||||
|
||||
morphologizer.set_store_activations(True)
|
||||
morphologizer.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "morphologizer" in doc.activations
|
||||
assert set(doc.activations["morphologizer"].keys()) == {"guesses", "probs"}
|
||||
assert doc.activations["morphologizer"]["probs"].shape == (5, 6)
|
||||
assert doc.activations["morphologizer"]["guesses"].shape == (5,)
|
||||
|
||||
morphologizer.set_store_activations(["probs"])
|
||||
doc = nlp("This is a test.")
|
||||
assert "morphologizer" in doc.activations
|
||||
assert set(doc.activations["morphologizer"].keys()) == {"probs"}
|
||||
assert doc.activations["morphologizer"]["probs"].shape == (5, 6)
|
||||
|
|
|
@ -118,17 +118,11 @@ def test_store_activations():
|
|||
nO = senter.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["senter"].keys())) == 0
|
||||
assert "senter" not in doc.activations
|
||||
|
||||
senter.set_store_activations(True)
|
||||
senter.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "senter" in doc.activations
|
||||
assert set(doc.activations["senter"].keys()) == {"guesses", "probs"}
|
||||
assert doc.activations["senter"]["probs"].shape == (5, nO)
|
||||
assert doc.activations["senter"]["guesses"].shape == (5,)
|
||||
|
||||
senter.set_store_activations(["probs"])
|
||||
doc = nlp("This is a test.")
|
||||
assert "senter" in doc.activations
|
||||
assert set(doc.activations["senter"].keys()) == {"probs"}
|
||||
assert doc.activations["senter"]["probs"].shape == (5, 2)
|
||||
|
|
|
@ -432,15 +432,10 @@ def test_store_activations():
|
|||
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["spancat"].keys())) == 0
|
||||
assert "spancat" not in doc.activations
|
||||
|
||||
spancat.set_store_activations(True)
|
||||
spancat.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert set(doc.activations["spancat"].keys()) == {"indices", "scores"}
|
||||
assert doc.activations["spancat"]["indices"].shape == (12, 2)
|
||||
assert doc.activations["spancat"]["scores"].shape == (12, nO)
|
||||
|
||||
spancat.set_store_activations(["scores"])
|
||||
doc = nlp("This is a test.")
|
||||
assert set(doc.activations["spancat"].keys()) == {"scores"}
|
||||
assert doc.activations["spancat"]["scores"].shape == (12, nO)
|
||||
|
|
|
@ -223,20 +223,15 @@ def test_store_activations():
|
|||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["tagger"].keys())) == 0
|
||||
assert "tagger" not in doc.activations
|
||||
|
||||
tagger.set_store_activations(True)
|
||||
tagger.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert "tagger" in doc.activations
|
||||
assert set(doc.activations["tagger"].keys()) == {"guesses", "probs"}
|
||||
assert doc.activations["tagger"]["probs"].shape == (5, len(TAGS))
|
||||
assert doc.activations["tagger"]["guesses"].shape == (5,)
|
||||
|
||||
tagger.set_store_activations(["probs"])
|
||||
doc = nlp("This is a test.")
|
||||
assert set(doc.activations["tagger"].keys()) == {"probs"}
|
||||
assert doc.activations["tagger"]["probs"].shape == (5, len(TAGS))
|
||||
|
||||
|
||||
def test_tagger_requires_labels():
|
||||
nlp = English()
|
||||
|
|
|
@ -886,14 +886,9 @@ def test_store_activations():
|
|||
nO = textcat.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["textcat"].keys())) == 0
|
||||
assert "textcat" not in doc.activations
|
||||
|
||||
textcat.set_store_activations(True)
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat"].keys()) == ["probs"]
|
||||
assert doc.activations["textcat"]["probs"].shape == (nO,)
|
||||
|
||||
textcat.set_store_activations(["probs"])
|
||||
textcat.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat"].keys()) == ["probs"]
|
||||
assert doc.activations["textcat"]["probs"].shape == (nO,)
|
||||
|
@ -911,14 +906,9 @@ def test_store_activations_multi():
|
|||
nO = textcat.model.get_dim("nO")
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert len(list(doc.activations["textcat_multilabel"].keys())) == 0
|
||||
assert "textcat_multilabel" not in doc.activations
|
||||
|
||||
textcat.set_store_activations(True)
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat_multilabel"].keys()) == ["probs"]
|
||||
assert doc.activations["textcat_multilabel"]["probs"].shape == (nO,)
|
||||
|
||||
textcat.set_store_activations(["probs"])
|
||||
textcat.store_activations = True
|
||||
doc = nlp("This is a test.")
|
||||
assert list(doc.activations["textcat_multilabel"].keys()) == ["probs"]
|
||||
assert doc.activations["textcat_multilabel"]["probs"].shape == (nO,)
|
||||
|
|
Loading…
Reference in New Issue
Block a user