mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
aeb59f6791
|
@ -287,6 +287,8 @@ class Errors(object):
|
|||
E108 = ("As of spaCy v2.1, the pipe name `sbd` has been deprecated "
|
||||
"in favor of the pipe name `sentencizer`, which does the same "
|
||||
"thing. For example, use `nlp.create_pipeline('sentencizer')`")
|
||||
E109 = ("Model for component '{name}' not initialized. Did you forget to load "
|
||||
"a model, or forget to call begin_training()?")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -293,10 +293,16 @@ class Pipe(object):
|
|||
Both __call__ and pipe should delegate to the `predict()`
|
||||
and `set_annotations()` methods.
|
||||
"""
|
||||
self.require_model()
|
||||
scores, tensors = self.predict([doc])
|
||||
self.set_annotations([doc], scores, tensors=tensors)
|
||||
return doc
|
||||
|
||||
def require_model(self):
|
||||
"""Raise an error if the component's model is not initialized."""
|
||||
if getattr(self, 'model', None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
"""Apply the pipe to a stream of documents.
|
||||
|
||||
|
@ -313,6 +319,7 @@ class Pipe(object):
|
|||
"""Apply the pipeline's model to a batch of docs, without
|
||||
modifying them.
|
||||
"""
|
||||
self.require_model()
|
||||
raise NotImplementedError
|
||||
|
||||
def set_annotations(self, docs, scores, tensors=None):
|
||||
|
@ -325,6 +332,7 @@ class Pipe(object):
|
|||
|
||||
Delegates to predict() and get_loss().
|
||||
"""
|
||||
self.require_model()
|
||||
raise NotImplementedError
|
||||
|
||||
def rehearse(self, docs, sgd=None, losses=None, **config):
|
||||
|
@ -495,6 +503,7 @@ class Tensorizer(Pipe):
|
|||
docs (iterable): A sequence of `Doc` objects.
|
||||
RETURNS (object): Vector representations for each token in the docs.
|
||||
"""
|
||||
self.require_model()
|
||||
inputs = self.model.ops.flatten([doc.tensor for doc in docs])
|
||||
outputs = self.model(inputs)
|
||||
return self.model.ops.unflatten(outputs, [len(d) for d in docs])
|
||||
|
@ -519,6 +528,7 @@ class Tensorizer(Pipe):
|
|||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
"""
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
inputs = []
|
||||
|
@ -600,6 +610,7 @@ class Tagger(Pipe):
|
|||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle case where there are no tokens in any docs.
|
||||
n_labels = len(self.labels)
|
||||
|
@ -644,6 +655,7 @@ class Tagger(Pipe):
|
|||
doc.is_tagged = True
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
|
||||
|
@ -904,6 +916,7 @@ class MultitaskObjective(Tagger):
|
|||
return model
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
scores = self.model.softmax(tokvecs)
|
||||
return tokvecs, scores
|
||||
|
@ -1042,6 +1055,7 @@ class ClozeMultitask(Pipe):
|
|||
return sgd
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
vectors = self.model.output_layer(tokvecs)
|
||||
return tokvecs, vectors
|
||||
|
@ -1061,6 +1075,7 @@ class ClozeMultitask(Pipe):
|
|||
pass
|
||||
|
||||
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
predictions, bp_predictions = self.model.begin_update(docs, drop=drop)
|
||||
|
@ -1105,9 +1120,11 @@ class SimilarityHook(Pipe):
|
|||
yield self(doc)
|
||||
|
||||
def predict(self, doc1, doc2):
|
||||
self.require_model()
|
||||
return self.model.predict([(doc1, doc2)])
|
||||
|
||||
def update(self, doc1_doc2, golds, sgd=None, drop=0.):
|
||||
self.require_model()
|
||||
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
|
||||
|
||||
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
|
||||
|
@ -1171,6 +1188,7 @@ class TextCategorizer(Pipe):
|
|||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
scores = self.model(docs)
|
||||
scores = self.model.ops.asarray(scores)
|
||||
tensors = [doc.tensor for doc in docs]
|
||||
|
|
|
@ -205,7 +205,9 @@ class ParserModel(Model):
|
|||
return
|
||||
smaller = self.upper
|
||||
larger = Affine(new_output, smaller.nI)
|
||||
larger.W *= 0
|
||||
# Set nan as value for unseen classes, to prevent prediction.
|
||||
larger.W.fill(self.ops.xp.nan)
|
||||
larger.b.fill(self.ops.xp.nan)
|
||||
# It seems very unhappy if I pass these as smaller.W?
|
||||
# Seems to segfault. Maybe it's a descriptor protocol thing?
|
||||
smaller_W = smaller.W
|
||||
|
@ -254,8 +256,23 @@ class ParserStepModel(Model):
|
|||
if mask is not None:
|
||||
vector *= mask
|
||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||
# We can have nans from unseen classes.
|
||||
# For backprop purposes, we want to treat unseen classes as having the
|
||||
# lowest score.
|
||||
# numpy's nan_to_num function doesn't take a value, and nan is replaced
|
||||
# by 0...-inf is replaced by minimum, so we go via that. Ugly to the max.
|
||||
scores[self.ops.xp.isnan(scores)] = -self.ops.xp.inf
|
||||
self.ops.xp.nan_to_num(scores, copy=False)
|
||||
|
||||
def backprop_parser_step(d_scores, sgd=None):
|
||||
# If we have a non-zero gradient for a previously unseen class,
|
||||
# replace the weight with 0.
|
||||
new_classes = self.ops.xp.logical_and(
|
||||
self.vec2scores.ops.xp.isnan(self.vec2scores.b),
|
||||
d_scores.any(axis=0)
|
||||
)
|
||||
self.vec2scores.b[new_classes] = 0.
|
||||
self.vec2scores.W[new_classes] = 0.
|
||||
d_vector = get_d_vector(d_scores, sgd=sgd)
|
||||
if mask is not None:
|
||||
d_vector *= mask
|
||||
|
@ -400,6 +417,8 @@ cdef class precompute_hiddens:
|
|||
state_vector, mask = self.ops.maxout(state_vector)
|
||||
|
||||
def backprop_nonlinearity(d_best, sgd=None):
|
||||
# Fix nans (which can occur from unseen classes.)
|
||||
d_best[self.ops.xp.isnan(d_best)] = 0.
|
||||
if self.nP == 1:
|
||||
d_best *= mask
|
||||
d_best = d_best.reshape((d_best.shape + (1,)))
|
||||
|
|
|
@ -226,8 +226,14 @@ cdef class Parser:
|
|||
self.set_annotations(subbatch, parse_states, tensors=None)
|
||||
for doc in batch_in_order:
|
||||
yield doc
|
||||
|
||||
def require_model(self):
|
||||
"""Raise an error if the component's model is not initialized."""
|
||||
if getattr(self, 'model', None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def predict(self, docs, beam_width=1, beam_density=0.0, drop=0.):
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
if not any(len(doc) for doc in docs):
|
||||
|
@ -375,6 +381,7 @@ cdef class Parser:
|
|||
return [b for b in beams if not b.is_done]
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
|
|
Loading…
Reference in New Issue
Block a user