mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Remove old model command (now "vocab")
This commit is contained in:
parent
a6f6bd6c98
commit
affd3404ab
|
@ -6,7 +6,7 @@ from __future__ import print_function
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import plac
|
import plac
|
||||||
import sys
|
import sys
|
||||||
from spacy.cli import download, link, info, package, train, convert, model
|
from spacy.cli import download, link, info, package, train, convert
|
||||||
from spacy.cli import vocab, profile, evaluate, validate
|
from spacy.cli import vocab, profile, evaluate, validate
|
||||||
from spacy.util import prints
|
from spacy.util import prints
|
||||||
|
|
||||||
|
@ -18,7 +18,6 @@ if __name__ == '__main__':
|
||||||
'evaluate': evaluate,
|
'evaluate': evaluate,
|
||||||
'convert': convert,
|
'convert': convert,
|
||||||
'package': package,
|
'package': package,
|
||||||
'model': model,
|
|
||||||
'vocab': vocab,
|
'vocab': vocab,
|
||||||
'profile': profile,
|
'profile': profile,
|
||||||
'validate': validate
|
'validate': validate
|
||||||
|
|
|
@ -6,6 +6,5 @@ from .profile import profile
|
||||||
from .train import train
|
from .train import train
|
||||||
from .evaluate import evaluate
|
from .evaluate import evaluate
|
||||||
from .convert import convert
|
from .convert import convert
|
||||||
from .model import model
|
|
||||||
from .vocab import make_vocab as vocab
|
from .vocab import make_vocab as vocab
|
||||||
from .validate import validate
|
from .validate import validate
|
||||||
|
|
|
@ -1,140 +0,0 @@
|
||||||
# coding: utf8
|
|
||||||
from __future__ import unicode_literals
|
|
||||||
|
|
||||||
try:
|
|
||||||
import bz2
|
|
||||||
import gzip
|
|
||||||
except ImportError:
|
|
||||||
pass
|
|
||||||
import math
|
|
||||||
from ast import literal_eval
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import spacy
|
|
||||||
from preshed.counter import PreshCounter
|
|
||||||
|
|
||||||
from .. import util
|
|
||||||
from ..compat import fix_text
|
|
||||||
|
|
||||||
|
|
||||||
def model(cmd, lang, model_dir, freqs_data, clusters_data, vectors_data,
|
|
||||||
min_doc_freq=5, min_word_freq=200):
|
|
||||||
model_path = Path(model_dir)
|
|
||||||
freqs_path = Path(freqs_data)
|
|
||||||
clusters_path = Path(clusters_data) if clusters_data else None
|
|
||||||
vectors_path = Path(vectors_data) if vectors_data else None
|
|
||||||
|
|
||||||
check_dirs(freqs_path, clusters_path, vectors_path)
|
|
||||||
vocab = util.get_lang_class(lang).Defaults.create_vocab()
|
|
||||||
nlp = spacy.blank(lang)
|
|
||||||
vocab = nlp.vocab
|
|
||||||
probs, oov_prob = read_probs(
|
|
||||||
freqs_path, min_doc_freq=int(min_doc_freq), min_freq=int(min_doc_freq))
|
|
||||||
clusters = read_clusters(clusters_path) if clusters_path else {}
|
|
||||||
populate_vocab(vocab, clusters, probs, oov_prob)
|
|
||||||
add_vectors(vocab, vectors_path)
|
|
||||||
create_model(model_path, nlp)
|
|
||||||
|
|
||||||
|
|
||||||
def add_vectors(vocab, vectors_path):
|
|
||||||
with bz2.BZ2File(vectors_path.as_posix()) as f:
|
|
||||||
num_words, dim = next(f).split()
|
|
||||||
vocab.clear_vectors(int(dim))
|
|
||||||
for line in f:
|
|
||||||
word_w_vector = line.decode("utf8").strip().split(" ")
|
|
||||||
word = word_w_vector[0]
|
|
||||||
vector = np.array([float(val) for val in word_w_vector[1:]])
|
|
||||||
if word in vocab:
|
|
||||||
vocab.set_vector(word, vector)
|
|
||||||
|
|
||||||
|
|
||||||
def create_model(model_path, model):
|
|
||||||
if not model_path.exists():
|
|
||||||
model_path.mkdir()
|
|
||||||
model.to_disk(model_path.as_posix())
|
|
||||||
|
|
||||||
|
|
||||||
def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200):
|
|
||||||
counts = PreshCounter()
|
|
||||||
total = 0
|
|
||||||
freqs_file = check_unzip(freqs_path)
|
|
||||||
for i, line in enumerate(freqs_file):
|
|
||||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
|
||||||
freq = int(freq)
|
|
||||||
counts.inc(i + 1, freq)
|
|
||||||
total += freq
|
|
||||||
counts.smooth()
|
|
||||||
log_total = math.log(total)
|
|
||||||
freqs_file = check_unzip(freqs_path)
|
|
||||||
probs = {}
|
|
||||||
for line in freqs_file:
|
|
||||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
|
||||||
doc_freq = int(doc_freq)
|
|
||||||
freq = int(freq)
|
|
||||||
if doc_freq >= min_doc_freq and freq >= min_freq and len(
|
|
||||||
key) < max_length:
|
|
||||||
word = literal_eval(key)
|
|
||||||
smooth_count = counts.smoother(int(freq))
|
|
||||||
probs[word] = math.log(smooth_count) - log_total
|
|
||||||
oov_prob = math.log(counts.smoother(0)) - log_total
|
|
||||||
return probs, oov_prob
|
|
||||||
|
|
||||||
|
|
||||||
def read_clusters(clusters_path):
|
|
||||||
clusters = {}
|
|
||||||
with clusters_path.open() as f:
|
|
||||||
for line in f:
|
|
||||||
try:
|
|
||||||
cluster, word, freq = line.split()
|
|
||||||
word = fix_text(word)
|
|
||||||
except ValueError:
|
|
||||||
continue
|
|
||||||
# If the clusterer has only seen the word a few times, its
|
|
||||||
# cluster is unreliable.
|
|
||||||
if int(freq) >= 3:
|
|
||||||
clusters[word] = cluster
|
|
||||||
else:
|
|
||||||
clusters[word] = '0'
|
|
||||||
# Expand clusters with re-casing
|
|
||||||
for word, cluster in list(clusters.items()):
|
|
||||||
if word.lower() not in clusters:
|
|
||||||
clusters[word.lower()] = cluster
|
|
||||||
if word.title() not in clusters:
|
|
||||||
clusters[word.title()] = cluster
|
|
||||||
if word.upper() not in clusters:
|
|
||||||
clusters[word.upper()] = cluster
|
|
||||||
return clusters
|
|
||||||
|
|
||||||
|
|
||||||
def populate_vocab(vocab, clusters, probs, oov_prob):
|
|
||||||
for word, prob in reversed(
|
|
||||||
sorted(list(probs.items()), key=lambda item: item[1])):
|
|
||||||
lexeme = vocab[word]
|
|
||||||
lexeme.prob = prob
|
|
||||||
lexeme.is_oov = False
|
|
||||||
# Decode as a little-endian string, so that we can do & 15 to get
|
|
||||||
# the first 4 bits. See _parse_features.pyx
|
|
||||||
if word in clusters:
|
|
||||||
lexeme.cluster = int(clusters[word][::-1], 2)
|
|
||||||
else:
|
|
||||||
lexeme.cluster = 0
|
|
||||||
|
|
||||||
|
|
||||||
def check_unzip(file_path):
|
|
||||||
file_path_str = file_path.as_posix()
|
|
||||||
if file_path_str.endswith('gz'):
|
|
||||||
return gzip.open(file_path_str)
|
|
||||||
else:
|
|
||||||
return file_path.open()
|
|
||||||
|
|
||||||
|
|
||||||
def check_dirs(freqs_data, clusters_data, vectors_data):
|
|
||||||
if not freqs_data.is_file():
|
|
||||||
util.sys_exit(freqs_data.as_posix(), title="No frequencies file found")
|
|
||||||
if clusters_data and not clusters_data.is_file():
|
|
||||||
util.sys_exit(
|
|
||||||
clusters_data.as_posix(), title="No Brown clusters file found")
|
|
||||||
if vectors_data and not vectors_data.is_file():
|
|
||||||
util.sys_exit(
|
|
||||||
vectors_data.as_posix(), title="No word vectors file found")
|
|
Loading…
Reference in New Issue
Block a user