Remove old model command (now "vocab")

This commit is contained in:
ines 2017-11-01 13:14:03 +01:00
parent a6f6bd6c98
commit affd3404ab
3 changed files with 1 additions and 143 deletions

View File

@ -6,7 +6,7 @@ from __future__ import print_function
if __name__ == '__main__': if __name__ == '__main__':
import plac import plac
import sys import sys
from spacy.cli import download, link, info, package, train, convert, model from spacy.cli import download, link, info, package, train, convert
from spacy.cli import vocab, profile, evaluate, validate from spacy.cli import vocab, profile, evaluate, validate
from spacy.util import prints from spacy.util import prints
@ -18,7 +18,6 @@ if __name__ == '__main__':
'evaluate': evaluate, 'evaluate': evaluate,
'convert': convert, 'convert': convert,
'package': package, 'package': package,
'model': model,
'vocab': vocab, 'vocab': vocab,
'profile': profile, 'profile': profile,
'validate': validate 'validate': validate

View File

@ -6,6 +6,5 @@ from .profile import profile
from .train import train from .train import train
from .evaluate import evaluate from .evaluate import evaluate
from .convert import convert from .convert import convert
from .model import model
from .vocab import make_vocab as vocab from .vocab import make_vocab as vocab
from .validate import validate from .validate import validate

View File

@ -1,140 +0,0 @@
# coding: utf8
from __future__ import unicode_literals
try:
import bz2
import gzip
except ImportError:
pass
import math
from ast import literal_eval
from pathlib import Path
import numpy as np
import spacy
from preshed.counter import PreshCounter
from .. import util
from ..compat import fix_text
def model(cmd, lang, model_dir, freqs_data, clusters_data, vectors_data,
min_doc_freq=5, min_word_freq=200):
model_path = Path(model_dir)
freqs_path = Path(freqs_data)
clusters_path = Path(clusters_data) if clusters_data else None
vectors_path = Path(vectors_data) if vectors_data else None
check_dirs(freqs_path, clusters_path, vectors_path)
vocab = util.get_lang_class(lang).Defaults.create_vocab()
nlp = spacy.blank(lang)
vocab = nlp.vocab
probs, oov_prob = read_probs(
freqs_path, min_doc_freq=int(min_doc_freq), min_freq=int(min_doc_freq))
clusters = read_clusters(clusters_path) if clusters_path else {}
populate_vocab(vocab, clusters, probs, oov_prob)
add_vectors(vocab, vectors_path)
create_model(model_path, nlp)
def add_vectors(vocab, vectors_path):
with bz2.BZ2File(vectors_path.as_posix()) as f:
num_words, dim = next(f).split()
vocab.clear_vectors(int(dim))
for line in f:
word_w_vector = line.decode("utf8").strip().split(" ")
word = word_w_vector[0]
vector = np.array([float(val) for val in word_w_vector[1:]])
if word in vocab:
vocab.set_vector(word, vector)
def create_model(model_path, model):
if not model_path.exists():
model_path.mkdir()
model.to_disk(model_path.as_posix())
def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200):
counts = PreshCounter()
total = 0
freqs_file = check_unzip(freqs_path)
for i, line in enumerate(freqs_file):
freq, doc_freq, key = line.rstrip().split('\t', 2)
freq = int(freq)
counts.inc(i + 1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
freqs_file = check_unzip(freqs_path)
probs = {}
for line in freqs_file:
freq, doc_freq, key = line.rstrip().split('\t', 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(
key) < max_length:
word = literal_eval(key)
smooth_count = counts.smoother(int(freq))
probs[word] = math.log(smooth_count) - log_total
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def read_clusters(clusters_path):
clusters = {}
with clusters_path.open() as f:
for line in f:
try:
cluster, word, freq = line.split()
word = fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its
# cluster is unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = '0'
# Expand clusters with re-casing
for word, cluster in list(clusters.items()):
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters:
clusters[word.upper()] = cluster
return clusters
def populate_vocab(vocab, clusters, probs, oov_prob):
for word, prob in reversed(
sorted(list(probs.items()), key=lambda item: item[1])):
lexeme = vocab[word]
lexeme.prob = prob
lexeme.is_oov = False
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
lexeme.cluster = int(clusters[word][::-1], 2)
else:
lexeme.cluster = 0
def check_unzip(file_path):
file_path_str = file_path.as_posix()
if file_path_str.endswith('gz'):
return gzip.open(file_path_str)
else:
return file_path.open()
def check_dirs(freqs_data, clusters_data, vectors_data):
if not freqs_data.is_file():
util.sys_exit(freqs_data.as_posix(), title="No frequencies file found")
if clusters_data and not clusters_data.is_file():
util.sys_exit(
clusters_data.as_posix(), title="No Brown clusters file found")
if vectors_data and not vectors_data.is_file():
util.sys_exit(
vectors_data.as_posix(), title="No word vectors file found")