Do dimension inference in span predictor

This commit is contained in:
Paul O'Leary McCann 2022-07-06 19:22:37 +09:00
parent b59b924e49
commit b0800ea855
2 changed files with 92 additions and 10 deletions

View File

@ -13,7 +13,6 @@ from .coref_util import get_sentence_ids
@registry.architectures("spacy.SpanPredictor.v1")
def build_span_predictor(
tok2vec: Model[List[Doc], List[Floats2d]],
tok2vec_size: int = 768,
hidden_size: int = 1024,
distance_embedding_size: int = 64,
conv_channels: int = 4,
@ -24,23 +23,58 @@ def build_span_predictor(
# TODO add model return types
with Model.define_operators({">>": chain, "&": tuplify}):
span_predictor = PyTorchWrapper(
span_predictor = Model(
"span_predictor",
forward=span_predictor_forward,
init=span_predictor_init,
dims={"nI": nI},
attrs={
"distance_embedding_size": distance_embedding_size,
"hidden_size": hidden_size,
"conv_channels": conv_channels,
"window_size": window_size,
"max_distance": max_distance,
"prefix": prefix,
},
)
head_info = build_get_head_metadata(prefix)
model = (tok2vec & head_info) >> span_predictor
model.set_ref("span_predictor", span_predictor)
return model
def span_predictor_init(model: Model, X=None, Y=None):
if model.layers:
return
if X is not None and model.has_dim("nI") is None:
model.set_dim("nI", get_width(X))
hidden_size = model.attrs["hidden_size"]
distance_embedding_size = model.attrs["distance_embedding_size"]
conv_channels = model.attrs["conv_channels"]
window_size = model.attrs["window_size"]
max_distance = model.attrs["max_distance"]
prefix = model.attrs["prefix"]
model._layers = [
PyTorchWrapper(
SpanPredictor(
tok2vec_size,
model.get_dim("nI"),
hidden_size,
distance_embedding_size,
conv_channels,
window_size,
max_distance,
prefix,
),
convert_inputs=convert_span_predictor_inputs,
)
# TODO use proper parameter for prefix
head_info = build_get_head_metadata(prefix)
model = (tok2vec & head_info) >> span_predictor
return model
# TODO maybe we need mixed precision and grad scaling?
]
def span_predictor_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_span_predictor_inputs(
model: Model, X: Tuple[List[Floats2d], Tuple[List[Ints1d], List[Ints1d]]], is_train: bool

View File

@ -5,6 +5,7 @@ from thinc.types import Floats2d, Floats3d, Ints2d
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
import srsly
from .trainable_pipe import TrainablePipe
from ..language import Language
@ -13,7 +14,7 @@ from ..errors import Errors
from ..scorer import Scorer, doc2clusters
from ..tokens import Doc
from ..vocab import Vocab
from ..util import registry
from ..util import registry, from_bytes, from_disk
from ..ml.models.coref_util import (
MentionClusters,
@ -23,7 +24,6 @@ from ..ml.models.coref_util import (
default_span_predictor_config = """
[model]
@architectures = "spacy.SpanPredictor.v1"
tok2vec_size = 768
hidden_size = 1024
distance_embedding_size = 64
conv_channels = 4
@ -274,3 +274,51 @@ class SpanPredictor(TrainablePipe):
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
def from_bytes(self, bytes_data, *, exclude=tuple()):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
}
from_bytes(bytes_data, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": lambda b: self.model.from_bytes(b),
}
from_bytes(bytes_data, model_deserializers, exclude)
return self
def from_disk(self, path, exclude=tuple()):
def load_model(p):
try:
with open(p, "rb") as mfile:
self.model.from_bytes(mfile.read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
}
from_disk(path, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": load_model,
}
from_disk(path, model_deserializers, exclude)
return self
def _initialize_from_disk(self):
# The PyTorch model is constructed lazily, so we need to
# explicitly initialize the model before deserialization.
model = self.model.get_ref("span_predictor")
if model.has_dim("nI") is None:
model.set_dim("nI", self.cfg["nI"])
self.model.initialize()