Merge pull request #2247 from skrcode/1480

1480 - Implement Fast-Text vectors with subword features
This commit is contained in:
Matthew Honnibal 2018-05-21 01:16:21 +02:00 committed by GitHub
commit b096b22c20
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 59 additions and 3 deletions

View File

@ -23,6 +23,18 @@ def vectors():
('juice', [5, 5, 10]),
('pie', [7, 6.3, 8.9])]
@pytest.fixture
def ngrams_vectors():
return [
("apple", [1, 2, 3]),
("app", [-0.1, -0.2, -0.3]),
('ppl', [-0.2, -0.3, -0.4]),
('pl', [0.7, 0.8, 0.9])
]
@pytest.fixture()
def ngrams_vocab(en_vocab, ngrams_vectors):
add_vecs_to_vocab(en_vocab, ngrams_vectors)
return en_vocab
@pytest.fixture
def data():
@ -105,6 +117,18 @@ def test_vectors_token_vector(tokenizer_v, vectors, text):
assert vectors[1] == (doc[2].text, list(doc[2].vector))
@pytest.mark.parametrize('text', ["apple"])
def test_vectors__ngrams_word(ngrams_vocab, text):
assert list(ngrams_vocab.get_vector(text)) == list(ngrams_vectors()[0][1])
@pytest.mark.parametrize('text', ["applpie"])
def test_vectors__ngrams_subword(ngrams_vocab, text):
truth = list(ngrams_vocab.get_vector(text,1,6))
test = list([(ngrams_vectors()[1][1][i] + ngrams_vectors()[2][1][i] + ngrams_vectors()[3][1][i])/3 for i in range(len(ngrams_vectors()[1][1]))])
eps = [abs(truth[i] - test[i]) for i in range(len(truth))]
for i in eps:
assert i<1e-6
@pytest.mark.parametrize('text', ["apple", "orange"])
def test_vectors_lexeme_vector(vocab, text):
lex = vocab[text]

View File

@ -309,7 +309,7 @@ cdef class Vocab:
link_vectors_to_models(self)
return remap
def get_vector(self, orth):
def get_vector(self, orth, minn=None, maxn=None):
"""Retrieve a vector for a word in the vocabulary. Words can be looked
up by string or int ID. If no vectors data is loaded, ValueError is
raised.
@ -320,10 +320,42 @@ cdef class Vocab:
"""
if isinstance(orth, basestring_):
orth = self.strings.add(orth)
word = self[orth].orth_
if orth in self.vectors.key2row:
return self.vectors[orth]
else:
return numpy.zeros((self.vectors_length,), dtype='f')
# Assign default ngram limits to minn and maxn which is the length of the word.
if minn is None:
minn = len(word)
if maxn is None:
maxn = len(word)
vectors = numpy.zeros((self.vectors_length,), dtype='f')
# Fasttext's ngram computation taken from https://github.com/facebookresearch/fastText
ngrams_size = 0;
for i in range(len(word)):
ngram = ""
if (word[i] and 0xC0) == 0x80:
continue
n = 1
j = i
while (j < len(word) and n <= maxn):
if n > maxn:
break
ngram += word[j]
j = j + 1
while (j < len(word) and (word[j] and 0xC0) == 0x80):
ngram += word[j]
j = j + 1
if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))):
if self.strings[ngram] in self.vectors.key2row:
vectors = numpy.add(self.vectors[self.strings[ngram]],vectors)
ngrams_size += 1
n = n + 1
if ngrams_size > 0:
vectors = vectors * (1.0/ngrams_size)
return vectors
def set_vector(self, orth, vector):
"""Set a vector for a word in the vocabulary. Words can be referenced