mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 09:44:36 +03:00
small fixes
This commit is contained in:
parent
6521cfa132
commit
b12001f368
|
@ -116,8 +116,8 @@ def run_pipeline():
|
|||
# STEP 6: create the entity linking pipe
|
||||
if train_pipe:
|
||||
print("STEP 6: training Entity Linking pipe", datetime.datetime.now())
|
||||
train_limit = 100
|
||||
dev_limit = 20
|
||||
train_limit = 5000
|
||||
dev_limit = 1000
|
||||
print("Training on", train_limit, "articles")
|
||||
print("Dev testing on", dev_limit, "articles")
|
||||
print()
|
||||
|
@ -145,6 +145,7 @@ def run_pipeline():
|
|||
random.shuffle(train_data)
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
||||
batchnr = 0
|
||||
|
||||
with nlp.disable_pipes(*other_pipes):
|
||||
for batch in batches:
|
||||
|
@ -156,35 +157,43 @@ def run_pipeline():
|
|||
drop=DROPOUT,
|
||||
losses=losses,
|
||||
)
|
||||
batchnr += 1
|
||||
except Exception as e:
|
||||
print("Error updating batch", e)
|
||||
|
||||
losses['entity_linker'] = losses['entity_linker'] / batchnr
|
||||
print("Epoch, train loss", itn, round(losses['entity_linker'], 2))
|
||||
|
||||
# baseline using only prior probabilities
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print()
|
||||
print("STEP 7: performance measurement of Entity Linking pipe", datetime.datetime.now())
|
||||
print()
|
||||
|
||||
# print(" measuring accuracy 1-1")
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_1_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc combo:", round(train_acc_1_1, 2), round(dev_acc_1_1, 2))
|
||||
|
||||
# print(" measuring accuracy 1-0")
|
||||
# baseline using only prior probabilities
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
|
||||
print("train/dev acc prior:", round(train_acc_0_1, 2), round(dev_acc_0_1, 2))
|
||||
|
||||
# using only context
|
||||
el_pipe.context_weight = 1
|
||||
el_pipe.prior_weight = 0
|
||||
dev_acc_1_0 = _measure_accuracy(dev_data, el_pipe)
|
||||
train_acc_1_0 = _measure_accuracy(train_data, el_pipe)
|
||||
|
||||
print("train/dev acc, 1-1, 0-1, 1-0:" ,
|
||||
round(train_acc_1_1, 2), round(train_acc_0_1, 2), round(train_acc_1_0, 2), "/",
|
||||
round(dev_acc_1_1, 2), round(dev_acc_0_1, 2), round(dev_acc_1_0, 2))
|
||||
print("train/dev acc context:", round(train_acc_1_0, 2), round(dev_acc_1_0, 2))
|
||||
print()
|
||||
|
||||
# test Entity Linker
|
||||
if to_test_pipeline:
|
||||
print()
|
||||
print("STEP 8: applying Entity Linking to toy example", datetime.datetime.now())
|
||||
print()
|
||||
run_el_toy_example(kb=my_kb, nlp=nlp)
|
||||
print()
|
||||
|
@ -197,9 +206,9 @@ def _measure_accuracy(data, el_pipe):
|
|||
correct = 0
|
||||
incorrect = 0
|
||||
|
||||
docs = [d for d, g in data]
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
docs = el_pipe.pipe(docs)
|
||||
golds = [g for d, g in data]
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
|
|
|
@ -1188,7 +1188,7 @@ class EntityLinker(Pipe):
|
|||
def get_loss(self, docs, golds, scores):
|
||||
targets = [[1] for _ in golds] # assuming we're only using positive examples
|
||||
loss, gradients = self.get_cossim_loss_2(yh=scores, y=golds, t=targets)
|
||||
#loss = loss / len(golds)
|
||||
loss = loss / len(golds)
|
||||
return loss, gradients
|
||||
|
||||
def get_cossim_loss_2(self, yh, y, t):
|
||||
|
|
Loading…
Reference in New Issue
Block a user