mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Tidy up tests
This commit is contained in:
parent
d165af26be
commit
b1d568a4df
76
spacy/tests/regression/test_issue5501-6000.py
Normal file
76
spacy/tests/regression/test_issue5501-6000.py
Normal file
|
@ -0,0 +1,76 @@
|
||||||
|
from thinc.api import fix_random_seed
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.tokens import Span
|
||||||
|
from spacy import displacy
|
||||||
|
from spacy.pipeline import merge_entities
|
||||||
|
|
||||||
|
|
||||||
|
def test_issue5551():
|
||||||
|
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
|
||||||
|
component = "textcat"
|
||||||
|
pipe_cfg = {
|
||||||
|
"model": {
|
||||||
|
"@architectures": "spacy.TextCatBOW.v1",
|
||||||
|
"exclusive_classes": True,
|
||||||
|
"ngram_size": 2,
|
||||||
|
"no_output_layer": False,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
results = []
|
||||||
|
for i in range(3):
|
||||||
|
fix_random_seed(0)
|
||||||
|
nlp = English()
|
||||||
|
example = (
|
||||||
|
"Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.",
|
||||||
|
{"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}},
|
||||||
|
)
|
||||||
|
pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
|
||||||
|
for label in set(example[1]["cats"]):
|
||||||
|
pipe.add_label(label)
|
||||||
|
nlp.initialize()
|
||||||
|
# Store the result of each iteration
|
||||||
|
result = pipe.model.predict([nlp.make_doc(example[0])])
|
||||||
|
results.append(list(result[0]))
|
||||||
|
# All results should be the same because of the fixed seed
|
||||||
|
assert len(results) == 3
|
||||||
|
assert results[0] == results[1]
|
||||||
|
assert results[0] == results[2]
|
||||||
|
|
||||||
|
|
||||||
|
def test_issue5838():
|
||||||
|
# Displacy's EntityRenderer break line
|
||||||
|
# not working after last entity
|
||||||
|
sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n"
|
||||||
|
nlp = English()
|
||||||
|
doc = nlp(sample_text)
|
||||||
|
doc.ents = [Span(doc, 7, 8, label="test")]
|
||||||
|
html = displacy.render(doc, style="ent")
|
||||||
|
found = html.count("</br>")
|
||||||
|
assert found == 4
|
||||||
|
|
||||||
|
|
||||||
|
def test_issue5918():
|
||||||
|
# Test edge case when merging entities.
|
||||||
|
nlp = English()
|
||||||
|
ruler = nlp.add_pipe("entity_ruler")
|
||||||
|
patterns = [
|
||||||
|
{"label": "ORG", "pattern": "Digicon Inc"},
|
||||||
|
{"label": "ORG", "pattern": "Rotan Mosle Inc's"},
|
||||||
|
{"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"},
|
||||||
|
]
|
||||||
|
ruler.add_patterns(patterns)
|
||||||
|
|
||||||
|
text = """
|
||||||
|
Digicon Inc said it has completed the previously-announced disposition
|
||||||
|
of its computer systems division to an investment group led by
|
||||||
|
Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate.
|
||||||
|
"""
|
||||||
|
doc = nlp(text)
|
||||||
|
assert len(doc.ents) == 3
|
||||||
|
# make it so that the third span's head is within the entity (ent_iob=I)
|
||||||
|
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
|
||||||
|
# TODO: test for logging here
|
||||||
|
# with pytest.warns(UserWarning):
|
||||||
|
# doc[29].head = doc[33]
|
||||||
|
doc = merge_entities(doc)
|
||||||
|
assert len(doc.ents) == 3
|
|
@ -1,37 +0,0 @@
|
||||||
from spacy.lang.en import English
|
|
||||||
from spacy.util import fix_random_seed
|
|
||||||
|
|
||||||
|
|
||||||
def test_issue5551():
|
|
||||||
"""Test that after fixing the random seed, the results of the pipeline are truly identical"""
|
|
||||||
component = "textcat"
|
|
||||||
pipe_cfg = {
|
|
||||||
"model": {
|
|
||||||
"@architectures": "spacy.TextCatBOW.v1",
|
|
||||||
"exclusive_classes": True,
|
|
||||||
"ngram_size": 2,
|
|
||||||
"no_output_layer": False,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
results = []
|
|
||||||
for i in range(3):
|
|
||||||
fix_random_seed(0)
|
|
||||||
nlp = English()
|
|
||||||
example = (
|
|
||||||
"Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.",
|
|
||||||
{"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}},
|
|
||||||
)
|
|
||||||
pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
|
|
||||||
for label in set(example[1]["cats"]):
|
|
||||||
pipe.add_label(label)
|
|
||||||
nlp.initialize()
|
|
||||||
|
|
||||||
# Store the result of each iteration
|
|
||||||
result = pipe.model.predict([nlp.make_doc(example[0])])
|
|
||||||
results.append(list(result[0]))
|
|
||||||
|
|
||||||
# All results should be the same because of the fixed seed
|
|
||||||
assert len(results) == 3
|
|
||||||
assert results[0] == results[1]
|
|
||||||
assert results[0] == results[2]
|
|
|
@ -1,23 +0,0 @@
|
||||||
from spacy.lang.en import English
|
|
||||||
from spacy.tokens import Span
|
|
||||||
from spacy import displacy
|
|
||||||
|
|
||||||
|
|
||||||
SAMPLE_TEXT = """First line
|
|
||||||
Second line, with ent
|
|
||||||
Third line
|
|
||||||
Fourth line
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
def test_issue5838():
|
|
||||||
# Displacy's EntityRenderer break line
|
|
||||||
# not working after last entity
|
|
||||||
|
|
||||||
nlp = English()
|
|
||||||
doc = nlp(SAMPLE_TEXT)
|
|
||||||
doc.ents = [Span(doc, 7, 8, label="test")]
|
|
||||||
|
|
||||||
html = displacy.render(doc, style="ent")
|
|
||||||
found = html.count("</br>")
|
|
||||||
assert found == 4
|
|
|
@ -1,29 +0,0 @@
|
||||||
from spacy.lang.en import English
|
|
||||||
from spacy.pipeline import merge_entities
|
|
||||||
|
|
||||||
|
|
||||||
def test_issue5918():
|
|
||||||
# Test edge case when merging entities.
|
|
||||||
nlp = English()
|
|
||||||
ruler = nlp.add_pipe("entity_ruler")
|
|
||||||
patterns = [
|
|
||||||
{"label": "ORG", "pattern": "Digicon Inc"},
|
|
||||||
{"label": "ORG", "pattern": "Rotan Mosle Inc's"},
|
|
||||||
{"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"},
|
|
||||||
]
|
|
||||||
ruler.add_patterns(patterns)
|
|
||||||
|
|
||||||
text = """
|
|
||||||
Digicon Inc said it has completed the previously-announced disposition
|
|
||||||
of its computer systems division to an investment group led by
|
|
||||||
Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate.
|
|
||||||
"""
|
|
||||||
doc = nlp(text)
|
|
||||||
assert len(doc.ents) == 3
|
|
||||||
# make it so that the third span's head is within the entity (ent_iob=I)
|
|
||||||
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
|
|
||||||
# TODO: test for logging here
|
|
||||||
# with pytest.warns(UserWarning):
|
|
||||||
# doc[29].head = doc[33]
|
|
||||||
doc = merge_entities(doc)
|
|
||||||
assert len(doc.ents) == 3
|
|
Loading…
Reference in New Issue
Block a user