mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Construct nlp from uninterpolated config before training
This commit is contained in:
parent
e06ff8b71d
commit
b2d07de786
|
@ -78,6 +78,9 @@ def train(
|
|||
config = util.load_config(
|
||||
config_path, overrides=config_overrides, interpolate=True
|
||||
)
|
||||
# Keep a second un-interpolated config so we can preserve variables in
|
||||
# the final nlp object we train and serialize
|
||||
raw_config = util.load_config(config_path, overrides=config_overrides)
|
||||
if config["training"]["seed"] is not None:
|
||||
fix_random_seed(config["training"]["seed"])
|
||||
allocator = config["training"]["gpu_allocator"]
|
||||
|
@ -86,7 +89,7 @@ def train(
|
|||
# Use original config here before it's resolved to functions
|
||||
sourced_components = get_sourced_components(config)
|
||||
with show_validation_error(config_path):
|
||||
nlp, config = util.load_model_from_config(config)
|
||||
nlp, config = util.load_model_from_config(raw_config)
|
||||
util.load_vocab_data_into_model(nlp, lookups=config["training"]["lookups"])
|
||||
if config["training"]["vectors"] is not None:
|
||||
util.load_vectors_into_model(nlp, config["training"]["vectors"])
|
||||
|
|
Loading…
Reference in New Issue
Block a user