mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
* Work on API reference docs
This commit is contained in:
parent
99e84488da
commit
b42db257b7
|
@ -1,6 +1,6 @@
|
|||
=====
|
||||
Usage
|
||||
=====
|
||||
=========
|
||||
Reference
|
||||
=========
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
@ -31,11 +31,26 @@ e.g. `spacy.en.English`. The pipeline class reads the data from disk, from a
|
|||
specified directory. By default, spaCy installs data into each language's
|
||||
package directory, and loads it from there.
|
||||
|
||||
Usually, this is all you will need:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
|
||||
If you need to replace some of the components, you may want to just make your
|
||||
own pipeline class --- the English class itself does almost no work; it just
|
||||
applies the modules in order. You can also provide a function or class that
|
||||
produces a tokenizer, tagger, parser or entity recognizer to :code:`English.__init__`,
|
||||
to customize the pipeline:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> from my_module import MyTagger
|
||||
>>> nlp = English(Tagger=MyTagger)
|
||||
|
||||
In more detail:
|
||||
|
||||
.. code::
|
||||
|
||||
class English(object):
|
||||
...
|
||||
class English(object):
|
||||
def __init__(self,
|
||||
data_dir=path.join(path.dirname(__file__), 'data'),
|
||||
Tokenizer=Tokenizer.from_dir,
|
||||
|
@ -45,48 +60,159 @@ package directory, and loads it from there.
|
|||
load_vectors=True
|
||||
):
|
||||
|
||||
data\_dir
|
||||
Usually left default. The data directory. May be None, to disable any data loading (including
|
||||
:code:`data_dir`
|
||||
:code:`unicode path`
|
||||
|
||||
The data directory. May be None, to disable any data loading (including
|
||||
the vocabulary).
|
||||
|
||||
Tokenizer
|
||||
Usually left default. A class/function that creates the tokenizer.
|
||||
Its signature should be:
|
||||
:code:`(Vocab vocab, unicode data_dir)(unicode) --> Tokens`
|
||||
:code:`Tokenizer`
|
||||
:code:`(Vocab vocab, unicode data_dir)(unicode) --> Tokens`
|
||||
|
||||
A class/function that creates the tokenizer.
|
||||
|
||||
Tagger / Parser / Entity
|
||||
Usually left default. A class/function that creates the part-of-speech tagger /
|
||||
:code:`Tagger` / :code:`Parser` / :code:`Entity`
|
||||
:code:`(Vocab vocab, unicode data_dir)(Tokens) --> None`
|
||||
|
||||
A class/function that creates the part-of-speech tagger /
|
||||
syntactic dependency parser / named entity recogniser.
|
||||
May be None or False, to disable tagging. Otherwise, its signature should be:
|
||||
:code:`(Vocab vocab, unicode data_dir)(Tokens) --> None`
|
||||
May be None or False, to disable tagging.
|
||||
|
||||
load_vectors
|
||||
:code:`load_vectors` (bool)
|
||||
A boolean value to control whether the word vectors are loaded.
|
||||
|
||||
|
||||
Processing Text
|
||||
---------------
|
||||
|
||||
The text processing API is very small and simple. Everything is a callable object,
|
||||
and you will almost always apply the pipeline all at once.
|
||||
|
||||
|
||||
.. py:method:: English.__call__(text, tag=True, parse=True, entity=True) --> Tokens
|
||||
|
||||
|
||||
text (unicode)
|
||||
The text to be processed. No pre-processing needs to be applied, and any
|
||||
length of text can be submitted. Usually you will submit a whole document.
|
||||
Text may be zero-length. An exception is raised if byte strings are supplied.
|
||||
|
||||
tag (bool)
|
||||
Whether to apply the part-of-speech tagger.
|
||||
|
||||
parse (bool)
|
||||
Whether to apply the syntactic dependency parser.
|
||||
|
||||
entity (bool)
|
||||
Whether to apply the named entity recognizer.
|
||||
|
||||
|
||||
Accessing Annotation
|
||||
--------------------
|
||||
|
||||
spaCy provides a rich API for using the annotations it calculates. It is arranged
|
||||
into three data classes:
|
||||
|
||||
1. :code:`Tokens`: A container, which provides document-level access;
|
||||
2. :code:`Span`: A (contiguous) sequence of tokens, e.g. a sentence, entity, etc
|
||||
3. :code:`Token`: An individual token, and a node in a parse tree;
|
||||
|
||||
|
||||
.. autoclass:: spacy.tokens.Tokens
|
||||
:members:
|
||||
|
||||
+---------------+-------------+-------------+
|
||||
| Attribute | Type | Attr API |
|
||||
+===============+=============+=============+
|
||||
| vocab | Vocab | __getitem__ |
|
||||
+---------------+-------------+-------------+
|
||||
| vocab.strings | StringStore | __getitem__ |
|
||||
+---------------+-------------+-------------+
|
||||
:code:`__getitem__`, :code:`__iter__`, :code:`__len__`
|
||||
The Tokens class behaves as a Python sequence, supporting the usual operators,
|
||||
len(), etc. Negative indexing is supported. Slices are not yet.
|
||||
|
||||
.. code::
|
||||
|
||||
>>> tokens = nlp(u'Zero one two three four five six')
|
||||
>>> tokens[0].orth_
|
||||
u'Zero'
|
||||
>>> tokens[-1].orth_
|
||||
u'six'
|
||||
>>> tokens[0:4]
|
||||
Error
|
||||
|
||||
:code:`sents`
|
||||
Iterate over sentences in the document.
|
||||
|
||||
:code:`ents`
|
||||
Iterate over entities in the document.
|
||||
|
||||
:code:`to_array`
|
||||
Given a list of M attribute IDs, export the tokens to a numpy ndarray
|
||||
of shape N*M, where N is the length of the sentence.
|
||||
|
||||
Arguments:
|
||||
attr_ids (list[int]): A list of attribute ID ints.
|
||||
|
||||
Returns:
|
||||
feat_array (numpy.ndarray[long, ndim=2]):
|
||||
A feature matrix, with one row per word, and one column per attribute
|
||||
indicated in the input attr_ids.
|
||||
|
||||
:code:`count_by`
|
||||
Produce a dict of {attribute (int): count (ints)} frequencies, keyed
|
||||
by the values of the given attribute ID.
|
||||
|
||||
>>> from spacy.en import English, attrs
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp(u'apple apple orange banana')
|
||||
>>> tokens.count_by(attrs.ORTH)
|
||||
{12800L: 1, 11880L: 2, 7561L: 1}
|
||||
>>> tokens.to_array([attrs.ORTH])
|
||||
array([[11880],
|
||||
[11880],
|
||||
[ 7561],
|
||||
[12800]])
|
||||
|
||||
:code:`merge`
|
||||
Merge a multi-word expression into a single token. Currently
|
||||
experimental; API is likely to change.
|
||||
|
||||
|
||||
Internals
|
||||
A Tokens instance stores the annotations in a C-array of `TokenC` structs.
|
||||
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
|
||||
a vocabulary item.
|
||||
|
||||
The Token objects are built lazily, from this underlying C-data.
|
||||
Internals
|
||||
A Tokens instance stores the annotations in a C-array of `TokenC` structs.
|
||||
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
|
||||
a vocabulary item.
|
||||
|
||||
For faster access, the underlying C data can be accessed from Cython. You
|
||||
can also export the data to a numpy array, via `Tokens.to_array`, if pure Python
|
||||
access is required, and you need slightly better performance. However, this
|
||||
is both slower and has a worse API than Cython access.
|
||||
The Token objects are built lazily, from this underlying C-data.
|
||||
|
||||
For faster access, the underlying C data can be accessed from Cython. You
|
||||
can also export the data to a numpy array, via `Tokens.to_array`, if pure Python
|
||||
access is required, and you need slightly better performance. However, this
|
||||
is both slower and has a worse API than Cython access.
|
||||
|
||||
.. autoclass:: spacy.spans.Span
|
||||
|
||||
:code:`__getitem__`, :code:`__iter__`, :code:`__len__`
|
||||
Sequence API
|
||||
|
||||
:code:`head`
|
||||
Syntactic head, or None
|
||||
|
||||
:code:`left`
|
||||
Tokens to the left of the span
|
||||
|
||||
:code:`rights`
|
||||
Tokens to the left of the span
|
||||
|
||||
:code:`orth` / :code:`orth_`
|
||||
Orth string
|
||||
|
||||
:code:`lemma` / :code:`lemma_`
|
||||
Lemma string
|
||||
|
||||
:code:`string`
|
||||
String
|
||||
|
||||
:code:`label` / :code:`label_`
|
||||
Label
|
||||
|
||||
:code:`subtree`
|
||||
Lefts + [self] + Rights
|
||||
|
||||
.. autoclass:: spacy.tokens.Token
|
||||
|
||||
|
@ -239,6 +365,24 @@ load_vectors
|
|||
ent_iob
|
||||
The IOB (inside, outside, begin) entity recognition tag for the token
|
||||
|
||||
|
||||
Lexical Lookup
|
||||
--------------
|
||||
|
||||
Where possible, spaCy computes information over lexical *types*, rather than
|
||||
*tokens*. If you process a large batch of text, the number of unique types
|
||||
you will see will grow exponentially slower than the number of tokens --- so
|
||||
it's much more efficient to compute over types. And, in small samples, we generally
|
||||
want to know about the distribution of a word in the language at large ---
|
||||
which again, is type-based information.
|
||||
|
||||
You can access the lexical features via the Token object, but you can also look them
|
||||
up in the vocabulary directly:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
>>> lexeme = nlp.vocab[u'Amazon']
|
||||
|
||||
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
|
||||
|
||||
.. py:method:: __len__(self) --> int
|
||||
|
@ -255,6 +399,7 @@ load_vectors
|
|||
|
||||
.. py:method:: load_vectors(self, loc: unicode) --> None
|
||||
|
||||
|
||||
.. py:class:: strings.StringStore(self)
|
||||
|
||||
.. py:method:: __len__(self) --> int
|
||||
|
@ -269,24 +414,4 @@ load_vectors
|
|||
|
||||
.. py:method:: load(self, loc: unicode) --> None
|
||||
|
||||
.. py:class:: tokenizer.Tokenizer(self, Vocab vocab, rules, prefix_re, suffix_re, infix_re, pos_tags, tag_names)
|
||||
|
||||
.. py:method:: tokens_from_list(self, List[unicode]) --> spacy.tokens.Tokens
|
||||
|
||||
.. py:method:: __call__(self, string: unicode) --> spacy.tokens.Tokens)
|
||||
|
||||
.. py:attribute:: vocab: spacy.vocab.Vocab
|
||||
|
||||
.. py:class:: en.pos.EnPosTagger(self, strings: spacy.strings.StringStore, data_dir: unicode)
|
||||
|
||||
.. py:method:: __call__(self, tokens: spacy.tokens.Tokens)
|
||||
|
||||
.. py:method:: train(self, tokens: spacy.tokens.Tokens, List[int] golds) --> int
|
||||
|
||||
.. py:method:: load_morph_exceptions(self, exc: Dict[unicode, Dict])
|
||||
|
||||
.. py:class:: syntax.parser.Parser(self, model_dir: unicode)
|
||||
|
||||
.. py:method:: __call__(self, tokens: spacy.tokens.Tokens) --> None
|
||||
|
||||
.. py:method:: train(self, spacy.tokens.Tokens) --> None
|
||||
|
|
Loading…
Reference in New Issue
Block a user