mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Work on API reference docs
This commit is contained in:
		
							parent
							
								
									99e84488da
								
							
						
					
					
						commit
						b42db257b7
					
				|  | @ -1,6 +1,6 @@ | |||
| ===== | ||||
| Usage | ||||
| ===== | ||||
| ========= | ||||
| Reference | ||||
| ========= | ||||
| 
 | ||||
| Overview | ||||
| -------- | ||||
|  | @ -31,11 +31,26 @@ e.g. `spacy.en.English`. The pipeline class reads the data from disk, from a | |||
| specified directory.  By default, spaCy installs data into each language's | ||||
| package directory, and loads it from there. | ||||
| 
 | ||||
| Usually, this is all you will need: | ||||
| 
 | ||||
|     >>> from spacy.en import English | ||||
|     >>> nlp = English() | ||||
| 
 | ||||
| If you need to replace some of the components, you may want to just make your | ||||
| own pipeline class --- the English class itself does almost no work; it just | ||||
| applies the modules in order. You can also provide a function or class that | ||||
| produces a tokenizer, tagger, parser or entity recognizer to :code:`English.__init__`, | ||||
| to customize the pipeline: | ||||
| 
 | ||||
|     >>> from spacy.en import English | ||||
|     >>> from my_module import MyTagger | ||||
|     >>> nlp = English(Tagger=MyTagger) | ||||
| 
 | ||||
| In more detail: | ||||
| 
 | ||||
| .. code:: | ||||
| 
 | ||||
|   class English(object): | ||||
|       ... | ||||
|       def __init__(self, | ||||
|         data_dir=path.join(path.dirname(__file__), 'data'), | ||||
|         Tokenizer=Tokenizer.from_dir, | ||||
|  | @ -45,34 +60,117 @@ package directory, and loads it from there. | |||
|         load_vectors=True | ||||
|       ): | ||||
| 
 | ||||
| data\_dir | ||||
|   Usually left default. The data directory.  May be None, to disable any data loading (including | ||||
| :code:`data_dir` | ||||
|   :code:`unicode path` | ||||
| 
 | ||||
|   The data directory.  May be None, to disable any data loading (including | ||||
|   the vocabulary). | ||||
| 
 | ||||
| Tokenizer | ||||
|   Usually left default. A class/function that creates the tokenizer. | ||||
|   Its signature should be: | ||||
| :code:`Tokenizer` | ||||
|   :code:`(Vocab vocab, unicode data_dir)(unicode) --> Tokens` | ||||
|    | ||||
| Tagger / Parser / Entity | ||||
|   Usually left default. A class/function that creates the part-of-speech tagger / | ||||
|   syntactic dependency parser / named entity recogniser. | ||||
|   May be None or False, to disable tagging. Otherwise, its signature should be: | ||||
|   A class/function that creates the tokenizer. | ||||
| 
 | ||||
| :code:`Tagger` / :code:`Parser` / :code:`Entity` | ||||
|   :code:`(Vocab vocab, unicode data_dir)(Tokens) --> None` | ||||
|    | ||||
| load_vectors | ||||
|   A class/function that creates the part-of-speech tagger / | ||||
|   syntactic dependency parser / named entity recogniser. | ||||
|   May be None or False, to disable tagging. | ||||
| 
 | ||||
| :code:`load_vectors` (bool) | ||||
|   A boolean value to control whether the word vectors are loaded. | ||||
| 
 | ||||
| .. autoclass:: spacy.tokens.Tokens | ||||
|   :members: | ||||
| 
 | ||||
|   +---------------+-------------+-------------+ | ||||
|   | Attribute     | Type        | Attr API    | | ||||
|   +===============+=============+=============+ | ||||
|   | vocab         | Vocab       | __getitem__ | | ||||
|   +---------------+-------------+-------------+ | ||||
|   | vocab.strings | StringStore | __getitem__ | | ||||
|   +---------------+-------------+-------------+ | ||||
| Processing Text | ||||
| --------------- | ||||
| 
 | ||||
| The text processing API is very small and simple. Everything is a callable object, | ||||
| and you will almost always apply the pipeline all at once. | ||||
| 
 | ||||
| 
 | ||||
| .. py:method:: English.__call__(text, tag=True, parse=True, entity=True) --> Tokens | ||||
| 
 | ||||
| 
 | ||||
| text (unicode) | ||||
|   The text to be processed.  No pre-processing needs to be applied, and any | ||||
|   length of text can be submitted.  Usually you will submit a whole document. | ||||
|   Text may be zero-length. An exception is raised if byte strings are supplied. | ||||
| 
 | ||||
| tag (bool) | ||||
|   Whether to apply the part-of-speech tagger. | ||||
| 
 | ||||
| parse (bool) | ||||
|   Whether to apply the syntactic dependency parser. | ||||
| 
 | ||||
| entity (bool) | ||||
|   Whether to apply the named entity recognizer. | ||||
| 
 | ||||
| 
 | ||||
| Accessing Annotation | ||||
| -------------------- | ||||
| 
 | ||||
| spaCy provides a rich API for using the annotations it calculates.  It is arranged | ||||
| into three data classes: | ||||
| 
 | ||||
| 1. :code:`Tokens`: A container, which provides document-level access; | ||||
| 2. :code:`Span`: A (contiguous) sequence of tokens, e.g. a sentence, entity, etc | ||||
| 3. :code:`Token`: An individual token, and a node in a parse tree; | ||||
| 
 | ||||
| 
 | ||||
| .. autoclass:: spacy.tokens.Tokens | ||||
| 
 | ||||
| :code:`__getitem__`, :code:`__iter__`, :code:`__len__` | ||||
|   The Tokens class behaves as a Python sequence, supporting the usual operators, | ||||
|   len(), etc.  Negative indexing is supported. Slices are not yet. | ||||
| 
 | ||||
|   .. code:: | ||||
| 
 | ||||
|     >>> tokens = nlp(u'Zero one two three four five six') | ||||
|     >>> tokens[0].orth_ | ||||
|     u'Zero' | ||||
|     >>> tokens[-1].orth_ | ||||
|     u'six' | ||||
|     >>> tokens[0:4] | ||||
|     Error | ||||
| 
 | ||||
| :code:`sents` | ||||
|   Iterate over sentences in the document. | ||||
| 
 | ||||
| :code:`ents` | ||||
|   Iterate over entities in the document. | ||||
| 
 | ||||
| :code:`to_array` | ||||
|   Given a list of M attribute IDs, export the tokens to a numpy ndarray | ||||
|   of shape N*M, where N is the length of the sentence. | ||||
| 
 | ||||
|     Arguments: | ||||
|         attr_ids (list[int]): A list of attribute ID ints. | ||||
| 
 | ||||
|     Returns: | ||||
|         feat_array (numpy.ndarray[long, ndim=2]): | ||||
|         A feature matrix, with one row per word, and one column per attribute | ||||
|         indicated in the input attr_ids. | ||||
|   | ||||
| :code:`count_by` | ||||
|   Produce a dict of {attribute (int): count (ints)} frequencies, keyed | ||||
|   by the values of the given attribute ID. | ||||
| 
 | ||||
|     >>> from spacy.en import English, attrs | ||||
|     >>> nlp = English() | ||||
|     >>> tokens = nlp(u'apple apple orange banana') | ||||
|     >>> tokens.count_by(attrs.ORTH) | ||||
|     {12800L: 1, 11880L: 2, 7561L: 1} | ||||
|     >>> tokens.to_array([attrs.ORTH]) | ||||
|     array([[11880], | ||||
|           [11880], | ||||
|           [ 7561], | ||||
|           [12800]]) | ||||
| 
 | ||||
| :code:`merge` | ||||
|   Merge a multi-word expression into a single token.  Currently | ||||
|   experimental; API is likely to change. | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| Internals | ||||
|  | @ -87,6 +185,34 @@ load_vectors | |||
|   access is required, and you need slightly better performance.  However, this | ||||
|   is both slower and has a worse API than Cython access. | ||||
| 
 | ||||
| .. autoclass:: spacy.spans.Span | ||||
| 
 | ||||
| :code:`__getitem__`, :code:`__iter__`, :code:`__len__` | ||||
|   Sequence API | ||||
| 
 | ||||
| :code:`head` | ||||
|   Syntactic head, or None | ||||
| 
 | ||||
| :code:`left` | ||||
|   Tokens to the left of the span | ||||
| 
 | ||||
| :code:`rights` | ||||
|   Tokens to the left of the span | ||||
| 
 | ||||
| :code:`orth` / :code:`orth_` | ||||
|   Orth string | ||||
| 
 | ||||
| :code:`lemma` / :code:`lemma_` | ||||
|   Lemma string | ||||
| 
 | ||||
| :code:`string` | ||||
|   String | ||||
| 
 | ||||
| :code:`label` / :code:`label_` | ||||
|   Label | ||||
| 
 | ||||
| :code:`subtree` | ||||
|   Lefts + [self] + Rights | ||||
| 
 | ||||
| .. autoclass:: spacy.tokens.Token | ||||
| 
 | ||||
|  | @ -239,6 +365,24 @@ load_vectors | |||
|   ent_iob | ||||
|     The IOB (inside, outside, begin) entity recognition tag for the token | ||||
| 
 | ||||
| 
 | ||||
| Lexical Lookup | ||||
| -------------- | ||||
| 
 | ||||
| Where possible, spaCy computes information over lexical *types*, rather than | ||||
| *tokens*.  If you process a large batch of text, the number of unique types | ||||
| you will see will grow exponentially slower than the number of tokens --- so | ||||
| it's much more efficient to compute over types.  And, in small samples, we generally | ||||
| want to know about the distribution of a word in the language at large --- | ||||
| which again, is type-based information. | ||||
| 
 | ||||
| You can access the lexical features via the Token object, but you can also look them | ||||
| up in the vocabulary directly: | ||||
| 
 | ||||
|     >>> from spacy.en import English | ||||
|     >>> nlp = English() | ||||
|     >>> lexeme = nlp.vocab[u'Amazon'] | ||||
| 
 | ||||
| .. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None) | ||||
| 
 | ||||
|   .. py:method:: __len__(self) --> int | ||||
|  | @ -255,6 +399,7 @@ load_vectors | |||
| 
 | ||||
|   .. py:method:: load_vectors(self, loc: unicode) --> None | ||||
| 
 | ||||
| 
 | ||||
| .. py:class:: strings.StringStore(self) | ||||
| 
 | ||||
|   .. py:method:: __len__(self) --> int | ||||
|  | @ -269,24 +414,4 @@ load_vectors | |||
| 
 | ||||
|   .. py:method:: load(self, loc: unicode) --> None | ||||
| 
 | ||||
| .. py:class:: tokenizer.Tokenizer(self, Vocab vocab, rules, prefix_re, suffix_re, infix_re, pos_tags, tag_names) | ||||
| 
 | ||||
|   .. py:method:: tokens_from_list(self, List[unicode]) --> spacy.tokens.Tokens | ||||
| 
 | ||||
|   .. py:method:: __call__(self, string: unicode) --> spacy.tokens.Tokens) | ||||
| 
 | ||||
|   .. py:attribute:: vocab: spacy.vocab.Vocab | ||||
| 
 | ||||
| .. py:class:: en.pos.EnPosTagger(self, strings: spacy.strings.StringStore, data_dir: unicode) | ||||
| 
 | ||||
|   .. py:method:: __call__(self, tokens: spacy.tokens.Tokens) | ||||
| 
 | ||||
|   .. py:method:: train(self, tokens: spacy.tokens.Tokens, List[int] golds) --> int | ||||
| 
 | ||||
|   .. py:method:: load_morph_exceptions(self, exc: Dict[unicode, Dict]) | ||||
| 
 | ||||
| .. py:class:: syntax.parser.Parser(self, model_dir: unicode) | ||||
| 
 | ||||
|   .. py:method:: __call__(self, tokens: spacy.tokens.Tokens) --> None | ||||
| 
 | ||||
|   .. py:method:: train(self, spacy.tokens.Tokens) --> None | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user