mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Learning smoothly
This commit is contained in:
parent
08bee76790
commit
b439e04f8d
|
@ -150,7 +150,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
|
||||
nn_loss.append(0.)
|
||||
trainer.each_epoch.append(track_progress)
|
||||
trainer.batch_size = 2
|
||||
trainer.batch_size = 6
|
||||
trainer.nb_epoch = 10000
|
||||
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
|
||||
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
|
||||
|
|
42
spacy/_ml.py
42
spacy/_ml.py
|
@ -1,4 +1,4 @@
|
|||
from thinc.api import layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.neural import Model, Maxout, Softmax, Affine
|
||||
from thinc.neural._classes.hash_embed import HashEmbed
|
||||
|
||||
|
@ -11,8 +11,13 @@ from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
|||
|
||||
def get_col(idx):
|
||||
def forward(X, drop=0.):
|
||||
assert len(X.shape) <= 3
|
||||
output = Model.ops.xp.ascontiguousarray(X[:, idx])
|
||||
return output, None
|
||||
def backward(y, sgd=None):
|
||||
dX = Model.ops.allocate(X.shape)
|
||||
dX[:, idx] += y
|
||||
return dX
|
||||
return output, backward
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
|
@ -37,12 +42,11 @@ def build_debug_model(state2vec, width, depth, nr_class):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
ops = Model.ops
|
||||
def forward(tokens_attrs_vectors, drop=0.):
|
||||
tokens, attr_vals, tokvecs = tokens_attrs_vectors
|
||||
|
||||
|
||||
orig_tokvecs_shape = tokvecs.shape
|
||||
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
|
||||
tokvecs.shape[2]))
|
||||
|
@ -57,6 +61,34 @@ def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
|||
return model
|
||||
|
||||
|
||||
def build_state2vec(nr_context_tokens, width, nr_vector=1000):
|
||||
ops = Model.ops
|
||||
with Model.define_operators({'|': concatenate, '+': add, '>>': chain}):
|
||||
|
||||
hiddens = [get_col(i) >> Affine(width) for i in range(nr_context_tokens)]
|
||||
model = (
|
||||
get_token_vectors
|
||||
>> add(*hiddens)
|
||||
>> Maxout(width)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def print_shape(prefix):
|
||||
def forward(X, drop=0.):
|
||||
return X, lambda dX, **kwargs: dX
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
@layerize
|
||||
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
||||
ops = Model.ops
|
||||
tokens, attrs, vectors = tokens_attrs_vectors
|
||||
def backward(d_output, sgd=None):
|
||||
return (tokens, d_output)
|
||||
return vectors, backward
|
||||
|
||||
|
||||
def build_parser_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
embed_tags = _reshape(chain(get_col(0), HashEmbed(16, nr_vector)))
|
||||
embed_deps = _reshape(chain(get_col(1), HashEmbed(16, nr_vector)))
|
||||
|
@ -161,7 +193,7 @@ def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
|||
>> with_flatten(
|
||||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape | tag)
|
||||
>> BatchNorm(Maxout(width, width*5), nO=width)
|
||||
>> Maxout(width, width*5)
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
|
|
|
@ -45,6 +45,7 @@ from ..gold cimport GoldParse
|
|||
from ..attrs cimport TAG, DEP
|
||||
|
||||
from .._ml import build_parser_state2vec, build_model
|
||||
from .._ml import build_state2vec, build_model
|
||||
from .._ml import build_debug_state2vec, build_debug_model
|
||||
|
||||
|
||||
|
@ -114,8 +115,10 @@ cdef class Parser:
|
|||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
state2vec = build_debug_state2vec(width, nr_vector, nF, nB, nL, nR)
|
||||
model = build_debug_model(state2vec, width, 2, self.moves.n_moves)
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
state2vec = build_state2vec(nr_context_tokens, width, nr_vector)
|
||||
#state2vec = build_debug_state2vec(width, nr_vector)
|
||||
model = build_debug_model(state2vec, width*2, 2, self.moves.n_moves)
|
||||
return model
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
|
@ -220,8 +223,10 @@ cdef class Parser:
|
|||
scores, finish_update = self._begin_update(states, tokvecs)
|
||||
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
|
||||
force_gold=False)
|
||||
for i, tok_i in enumerate(token_ids):
|
||||
d_tokens[i][tok_i] += batch_token_grads[i]
|
||||
for i, tok_ids in enumerate(token_ids):
|
||||
for j, tok_i in enumerate(tok_ids):
|
||||
if tok_i >= 0:
|
||||
d_tokens[i][tok_i] += batch_token_grads[i, j]
|
||||
|
||||
self._transition_batch(states, scores)
|
||||
|
||||
|
@ -237,6 +242,8 @@ cdef class Parser:
|
|||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
scores, finish_update = self.model.begin_update(features, drop=drop)
|
||||
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
||||
assert len(scores.shape) == 2
|
||||
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
||||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
|
@ -283,7 +290,7 @@ cdef class Parser:
|
|||
cdef int i
|
||||
for i, state in enumerate(states):
|
||||
self.moves.set_valid(&is_valid[i, 0], state.c)
|
||||
|
||||
|
||||
def _cost_batch(self, weight_t[:, ::1] costs, int[:, ::1] is_valid,
|
||||
states, golds):
|
||||
cdef int i
|
||||
|
|
|
@ -46,7 +46,8 @@ cdef class StateClass:
|
|||
n1 = words[self.B(1)]
|
||||
return ' '.join((third, second, top, '|', n0, n1))
|
||||
|
||||
def nr_context_tokens(self, int nF, int nB, int nS, int nL, int nR):
|
||||
@classmethod
|
||||
def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR):
|
||||
return 4
|
||||
|
||||
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
|
||||
|
|
Loading…
Reference in New Issue
Block a user