mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	Clean up unused parser code
This commit is contained in:
		
							parent
							
								
									17efb1c001
								
							
						
					
					
						commit
						b44f7e259c
					
				|  | @ -353,62 +353,6 @@ cdef class Parser: | |||
|                 self.cfg.setdefault('extra_labels', []).append(label) | ||||
| 
 | ||||
| 
 | ||||
| def _begin_update(self, model, states, tokvecs, drop=0.): | ||||
|     nr_class = self.moves.n_moves | ||||
|     attr_names = self.model.ops.allocate((2,), dtype='i') | ||||
|     attr_names[0] = TAG | ||||
|     attr_names[1] = DEP | ||||
| 
 | ||||
|     features = self._get_features(states, tokvecs, attr_names) | ||||
|     scores, finish_update = self.model.begin_update(features, drop=drop) | ||||
|     assert scores.shape[0] == len(states), (len(states), scores.shape) | ||||
|     assert len(scores.shape) == 2 | ||||
|     is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i') | ||||
|     self._validate_batch(is_valid, states) | ||||
|     softmaxed = self.model.ops.softmax(scores) | ||||
|     softmaxed *= is_valid | ||||
|     softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1)) | ||||
|     def backward(golds, sgd=None, losses=[], force_gold=False): | ||||
|         nonlocal softmaxed | ||||
|         costs = self.model.ops.allocate((len(states), nr_class), dtype='f') | ||||
|         d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f') | ||||
| 
 | ||||
|         self._cost_batch(costs, is_valid, states, golds) | ||||
|         self._set_gradient(d_scores, scores, is_valid, costs) | ||||
|         losses.append(numpy.abs(d_scores).sum()) | ||||
|         if force_gold: | ||||
|             softmaxed *= costs <= 0 | ||||
|         return finish_update(d_scores, sgd=sgd) | ||||
|     return softmaxed, backward | ||||
| 
 | ||||
| 
 | ||||
| def _get_features(self, states, all_tokvecs, attr_names, | ||||
|         nF=1, nB=0, nS=2, nL=2, nR=2): | ||||
|     n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR) | ||||
|     vector_length = all_tokvecs[0].shape[1] | ||||
|     tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32') | ||||
|     features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64') | ||||
|     tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f') | ||||
|     for i, state in enumerate(states): | ||||
|         state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR) | ||||
|         state.set_attributes(features[i], tokens[i], attr_names) | ||||
|         state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i]) | ||||
|     return (tokens, features, tokvecs) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1: | ||||
|     if prob <= 0 or prob >= 1.: | ||||
|         return 0 | ||||
|     cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat) | ||||
|     cdef double* probs = &py_probs[0] | ||||
|     for i in range(nr_feat): | ||||
|         if probs[i] >= prob: | ||||
|             feats[i].value /= prob | ||||
|         else: | ||||
|             feats[i].value = 0. | ||||
| 
 | ||||
| 
 | ||||
| cdef class StepwiseState: | ||||
|     cdef readonly StateClass stcls | ||||
|     cdef readonly Example eg | ||||
|  | @ -520,23 +464,3 @@ class ParserStateError(ValueError): | |||
|             "https://github.com/spacy-io/spaCy/issues/429\n" | ||||
|             "Please include the text that the parser failed on, which is:\n" | ||||
|             "%s" % repr(doc.text)) | ||||
| 
 | ||||
| cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil: | ||||
|     cdef int best = -1 | ||||
|     for i in range(n): | ||||
|         if costs[i] <= 0: | ||||
|             if best == -1 or scores[i] > scores[best]: | ||||
|                 best = i | ||||
|     return best | ||||
| 
 | ||||
| 
 | ||||
| cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions, | ||||
|                        int nr_class) except -1: | ||||
|     cdef weight_t score = 0 | ||||
|     cdef int mode = -1 | ||||
|     cdef int i | ||||
|     for i in range(nr_class): | ||||
|         if actions[i].move == move and (mode == -1 or scores[i] >= score): | ||||
|             mode = i | ||||
|             score = scores[i] | ||||
|     return mode | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user