Bug fixes to pipeline

This commit is contained in:
Matthew Honnibal 2017-05-18 04:29:51 -05:00
parent 8815507f8e
commit b460533827

View File

@ -8,6 +8,7 @@ from thinc.neural import Model, Softmax
import numpy
cimport numpy as np
import cytoolz
import util
from thinc.api import add, layerize, chain, clone, concatenate
from thinc.neural import Model, Maxout, Softmax, Affine
@ -42,12 +43,14 @@ class TokenVectorEncoder(object):
@classmethod
def Model(cls, width=128, embed_size=5000, **cfg):
width = util.env_opt('token_vector_width', width)
embed_size = util.env_opt('embed_size', embed_size)
return Tok2Vec(width, embed_size, preprocess=None)
def __init__(self, vocab, model=True, **cfg):
self.vocab = vocab
self.doc2feats = doc2feats()
self.model = self.Model() if model is True else model
self.model = model
def __call__(self, docs, state=None):
if isinstance(docs, Doc):
@ -60,7 +63,7 @@ class TokenVectorEncoder(object):
def pipe(self, docs, **kwargs):
raise NotImplementedError
def predict(self, docs):
feats = self.doc2feats(docs)
tokvecs = self.model(feats)
@ -88,6 +91,11 @@ class TokenVectorEncoder(object):
def get_loss(self, docs, golds, scores):
raise NotImplementedError
def begin_training(self, gold_tuples, pipeline=None):
self.doc2feats = doc2feats()
if self.model is True:
self.model = self.Model()
class NeuralTagger(object):
name = 'nn_tagger'
@ -117,15 +125,17 @@ class NeuralTagger(object):
guesses = guesses.get()
return guesses
def set_annotations(self, docs, tag_ids):
def set_annotations(self, docs, batch_tag_ids):
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef int idx = 0
cdef int i, j
cdef Vocab vocab = self.vocab
for i, doc in enumerate(docs):
tag_ids = tag_ids[idx:idx+len(doc)]
for j, tag_id in enumerate(tag_ids):
doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
doc_tag_ids = batch_tag_ids[idx:idx+len(doc)]
for j, tag_id in enumerate(doc_tag_ids):
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
idx += 1
def update(self, docs, golds, state=None, drop=0., sgd=None):
@ -139,25 +149,19 @@ class NeuralTagger(object):
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
d_tokvecs = bp_tag_scores(d_tag_scores, sgd)
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
bp_tokvecs(d_tokvecs, sgd=sgd)
state['tag_scores'] = tag_scores
state['bp_tag_scores'] = bp_tag_scores
state['d_tag_scores'] = d_tag_scores
state['tag_loss'] = loss
if 'd_tokvecs' in state:
state['d_tokvecs'] += d_tokvecs
else:
state['d_tokvecs'] = d_tokvecs
return state
def get_loss(self, docs, golds, scores):
tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)}
tag_index = {tag: i for i, tag in enumerate(self.vocab.morphology.tag_names)}
idx = 0
cdef int idx = 0
correct = numpy.zeros((scores.shape[0],), dtype='i')
for gold in golds:
for tag in gold.tags:
@ -165,10 +169,11 @@ class NeuralTagger(object):
idx += 1
correct = self.model.ops.xp.array(correct)
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
return (d_scores**2).sum(), d_scores
loss = (d_scores**2).sum()
d_scores = self.model.ops.asarray(d_scores)
return loss, d_scores
def begin_training(self, gold_tuples, pipeline=None):
# Populate tag map, if anything's missing.
tag_map = dict(self.vocab.morphology.tag_map)
for raw_text, annots_brackets in gold_tuples:
for annots, brackets in annots_brackets:
@ -176,14 +181,12 @@ class NeuralTagger(object):
for tag in tags:
if tag not in tag_map:
tag_map[tag] = {POS: X}
cdef Vocab vocab = self.vocab
vocab.morphology = Morphology(self.vocab.strings, tag_map,
self.vocab.morphology.lemmatizer)
vocab.morphology = Morphology(vocab.strings, tag_map,
vocab.morphology.lemmatizer)
self.model = Softmax(self.vocab.morphology.n_tags)
cdef class EntityRecognizer(LinearParser):
"""
Annotate named entities on Doc objects.