* Refactor language-independent tagger class

This commit is contained in:
Matthew Honnibal 2015-08-26 19:19:21 +02:00
parent a3d5e6c0dd
commit b4faf551f5
2 changed files with 151 additions and 83 deletions

View File

@ -4,24 +4,23 @@ from cymem.cymem cimport Pool
from ._ml cimport Model
from .strings cimport StringStore
from .structs cimport TokenC, LexemeC, Morphology, PosTag
from .structs cimport TokenC, LexemeC
from .parts_of_speech cimport univ_pos_t
from .vocab cimport Vocab
cdef class Tagger:
cdef readonly Pool mem
cdef readonly StringStore strings
cdef readonly Model model
cdef readonly Vocab vocab
cdef public object lemmatizer
cdef PreshMapArray _morph_cache
cdef public dict freqs
cdef PosTag* tags
cdef readonly object tag_names
cdef readonly object tag_map
cdef readonly int n_tags
cdef int predict(self, int i, const TokenC* tokens) except -1
cdef int update(self, int i, const TokenC* tokens, int gold) except -1
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1
#cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
#cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1

View File

@ -6,50 +6,129 @@ from thinc.typedefs cimport atom_t, weight_t
from .typedefs cimport attr_t
from .tokens.doc cimport Doc
from .morphology cimport set_morph_from_dict
from .attrs cimport TAG
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
from .parts_of_speech cimport PRT, VERB, X, PUNCT, EOL, SPACE
from .attrs cimport *
from ._ml cimport arg_max
cdef struct _CachedMorph:
Morphology morph
int lemma
cpdef enum:
P2_orth
P2_cluster
P2_shape
P2_prefix
P2_suffix
P2_pos
P2_lemma
P2_flags
P1_orth
P1_cluster
P1_shape
P1_prefix
P1_suffix
P1_pos
P1_lemma
P1_flags
W_orth
W_cluster
W_shape
W_prefix
W_suffix
W_pos
W_lemma
W_flags
N1_orth
N1_cluster
N1_shape
N1_prefix
N1_suffix
N1_pos
N1_lemma
N1_flags
N2_orth
N2_cluster
N2_shape
N2_prefix
N2_suffix
N2_pos
N2_lemma
N2_flags
N_CONTEXT_FIELDS
cdef class Tagger:
"""A part-of-speech tagger for English"""
@classmethod
def read_config(cls, data_dir):
return json.load(open(path.join(data_dir, 'pos', 'config.json')))
@classmethod
def default_templates(cls):
return (
(W_orth,),
(P1_lemma, P1_pos),
(P2_lemma, P2_pos),
(N1_orth,),
(N2_orth,),
(W_suffix,),
(W_prefix,),
(P1_pos,),
(P2_pos,),
(P1_pos, P2_pos),
(P1_pos, W_orth),
(P1_suffix,),
(N1_suffix,),
(W_shape,),
(W_cluster,),
(N1_cluster,),
(N2_cluster,),
(P1_cluster,),
(P2_cluster,),
(W_flags,),
(N1_flags,),
(N2_flags,),
(P1_flags,),
(P2_flags,),
)
def make_lemmatizer(self):
return None
def __init__(self, StringStore strings, data_dir):
def __init__(self, Vocab vocab, templates):
self.mem = Pool()
model_dir = path.join(data_dir, 'pos')
self.strings = strings
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
self.tag_names = sorted(cfg['tag_names'])
assert self.tag_names
self.n_tags = len(self.tag_names)
self.tag_map = cfg['tag_map']
cdef int n_tags = len(self.tag_names) + 1
self.vocab = vocab
cdef int n_tags = self.vocab.morphology.n_tags + 1
self.model = Model(n_tags, cfg['templates'], model_dir)
self._morph_cache = PreshMapArray(n_tags)
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
for i, tag in enumerate(sorted(self.tag_names)):
pos, props = self.tag_map[tag]
self.tags[i].id = i
self.tags[i].pos = pos
set_morph_from_dict(&self.tags[i].morph, props)
if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')):
self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer',
'morphs.json'))))
self.lemmatizer = self.make_lemmatizer(data_dir)
self.model = Model(n_tags, templates)
self.freqs = {TAG: defaultdict(int)}
for tag in self.tag_names:
self.freqs[TAG][self.strings[tag]] = 1
self.freqs[TAG][self.vocab.strings[tag]] = 1
self.freqs[TAG][0] = 1
@property
def tag_names(self):
return tuple(sorted(self.vocab.morphology.tag_map.keys()))
@classmethod
def from_dir(cls, data_dir, vocab):
if path.exists(path.join(data_dir, 'templates.json')):
templates = json.loads(open(path.join(data_dir, 'templates.json')))
else:
templates = cls.default_templates()
return cls(vocab, templates)
def __call__(self, Doc tokens):
"""Apply the tagger, setting the POS tags onto the Doc object.
@ -63,18 +142,14 @@ cdef class Tagger:
for i in range(tokens.length):
if tokens.data[i].pos == 0:
guess = self.predict(i, tokens.data)
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
self.vocab.morphology.assign_tag(&tokens.data[i], guess)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def tag_from_strings(self, Doc tokens, object tag_strs):
cdef int i
for i in range(tokens.length):
tokens.data[i].tag = self.strings[tag_strs[i]]
self.set_morph(i, &self.tags[self.tag_names.index(tag_strs[i])],
tokens.data)
self.vocab.morphology.assign_tag(&tokens.data[i], tag_strs[i])
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
@ -88,57 +163,51 @@ cdef class Tagger:
for i in range(tokens.length):
guess = self.update(i, tokens.data, golds[i])
loss = golds[i] != -1 and guess != golds[i]
tokens.data[i].tag = self.strings[self.tag_names[guess]]
self.set_morph(i, &self.tags[guess], tokens.data)
self.vocab.morphology.assign_tag(&tokens.data[i], guess)
correct += loss == 0
self.freqs[TAG][tokens.data[i].tag] += 1
return correct
cdef int predict(self, int i, const TokenC* tokens) except -1:
raise NotImplementedError
cdef atom_t[N_CONTEXT_FIELDS] context
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
return arg_max(scores, self.model.n_classes)
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
raise NotImplementedError
cdef atom_t[N_CONTEXT_FIELDS] context
_fill_from_token(&context[P2_orth], &tokens[i-2])
_fill_from_token(&context[P1_orth], &tokens[i-1])
_fill_from_token(&context[W_orth], &tokens[i])
_fill_from_token(&context[N1_orth], &tokens[i+1])
_fill_from_token(&context[N2_orth], &tokens[i+2])
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
loss = guess != gold if gold != -1 else 0
self.model.update(context, guess, gold, loss)
return guess
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1:
tokens[i].pos = tag.pos
cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.orth)
if cached is NULL:
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.lemmatize(tag.pos, tokens[i].lex)
cached.morph = tag.morph
self._morph_cache.set(tag.id, tokens[i].lex.orth, <void*>cached)
tokens[i].lemma = cached.lemma
tokens[i].morph = cached.morph
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1:
if self.lemmatizer is None:
return lex.orth
cdef unicode py_string = self.strings[lex.orth]
if pos != NOUN and pos != VERB and pos != ADJ:
return lex.orth
cdef set lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, pos)
lemma_string = sorted(lemma_strings)[0]
lemma = self.strings[lemma_string]
return lemma
def load_morph_exceptions(self, dict exc):
cdef unicode pos_str
cdef unicode form_str
cdef unicode lemma_str
cdef dict entries
cdef dict props
cdef int lemma
cdef attr_t orth
cdef int pos
for pos_str, entries in exc.items():
pos = self.tag_names.index(pos_str)
for form_str, props in entries.items():
lemma_str = props.get('L', form_str)
orth = self.strings[form_str]
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
cached.lemma = self.strings[lemma_str]
set_morph_from_dict(&cached.morph, props)
self._morph_cache.set(pos, orth, <void*>cached)
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
context[0] = t.lex.lower
context[1] = t.lex.cluster
context[2] = t.lex.shape
context[3] = t.lex.prefix
context[4] = t.lex.suffix
context[5] = t.tag
context[6] = t.lemma
if t.lex.flags & (1 << IS_ALPHA):
context[7] = 1
elif t.lex.flags & (1 << IS_PUNCT):
context[7] = 2
elif t.lex.flags & (1 << LIKE_URL):
context[7] = 3
elif t.lex.flags & (1 << LIKE_NUM):
context[7] = 4
else:
context[7] = 0