mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-25 19:33:42 +03:00
* Refactor language-independent tagger class
This commit is contained in:
parent
a3d5e6c0dd
commit
b4faf551f5
|
@ -4,24 +4,23 @@ from cymem.cymem cimport Pool
|
||||||
|
|
||||||
from ._ml cimport Model
|
from ._ml cimport Model
|
||||||
from .strings cimport StringStore
|
from .strings cimport StringStore
|
||||||
from .structs cimport TokenC, LexemeC, Morphology, PosTag
|
from .structs cimport TokenC, LexemeC
|
||||||
from .parts_of_speech cimport univ_pos_t
|
from .parts_of_speech cimport univ_pos_t
|
||||||
|
from .vocab cimport Vocab
|
||||||
|
|
||||||
|
|
||||||
cdef class Tagger:
|
cdef class Tagger:
|
||||||
cdef readonly Pool mem
|
cdef readonly Pool mem
|
||||||
cdef readonly StringStore strings
|
cdef readonly StringStore strings
|
||||||
cdef readonly Model model
|
cdef readonly Model model
|
||||||
|
cdef readonly Vocab vocab
|
||||||
cdef public object lemmatizer
|
cdef public object lemmatizer
|
||||||
cdef PreshMapArray _morph_cache
|
cdef PreshMapArray _morph_cache
|
||||||
cdef public dict freqs
|
cdef public dict freqs
|
||||||
|
|
||||||
cdef PosTag* tags
|
|
||||||
cdef readonly object tag_names
|
|
||||||
cdef readonly object tag_map
|
|
||||||
cdef readonly int n_tags
|
cdef readonly int n_tags
|
||||||
|
|
||||||
cdef int predict(self, int i, const TokenC* tokens) except -1
|
cdef int predict(self, int i, const TokenC* tokens) except -1
|
||||||
cdef int update(self, int i, const TokenC* tokens, int gold) except -1
|
cdef int update(self, int i, const TokenC* tokens, int gold) except -1
|
||||||
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
|
#cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1
|
||||||
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1
|
#cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1
|
||||||
|
|
223
spacy/tagger.pyx
223
spacy/tagger.pyx
|
@ -6,50 +6,129 @@ from thinc.typedefs cimport atom_t, weight_t
|
||||||
|
|
||||||
from .typedefs cimport attr_t
|
from .typedefs cimport attr_t
|
||||||
from .tokens.doc cimport Doc
|
from .tokens.doc cimport Doc
|
||||||
from .morphology cimport set_morph_from_dict
|
|
||||||
from .attrs cimport TAG
|
from .attrs cimport TAG
|
||||||
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
|
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
|
||||||
from .parts_of_speech cimport PRT, VERB, X, PUNCT, EOL, SPACE
|
from .parts_of_speech cimport PRT, VERB, X, PUNCT, EOL, SPACE
|
||||||
|
|
||||||
|
from .attrs cimport *
|
||||||
|
from ._ml cimport arg_max
|
||||||
|
|
||||||
cdef struct _CachedMorph:
|
|
||||||
Morphology morph
|
cpdef enum:
|
||||||
int lemma
|
P2_orth
|
||||||
|
P2_cluster
|
||||||
|
P2_shape
|
||||||
|
P2_prefix
|
||||||
|
P2_suffix
|
||||||
|
P2_pos
|
||||||
|
P2_lemma
|
||||||
|
P2_flags
|
||||||
|
|
||||||
|
P1_orth
|
||||||
|
P1_cluster
|
||||||
|
P1_shape
|
||||||
|
P1_prefix
|
||||||
|
P1_suffix
|
||||||
|
P1_pos
|
||||||
|
P1_lemma
|
||||||
|
P1_flags
|
||||||
|
|
||||||
|
W_orth
|
||||||
|
W_cluster
|
||||||
|
W_shape
|
||||||
|
W_prefix
|
||||||
|
W_suffix
|
||||||
|
W_pos
|
||||||
|
W_lemma
|
||||||
|
W_flags
|
||||||
|
|
||||||
|
N1_orth
|
||||||
|
N1_cluster
|
||||||
|
N1_shape
|
||||||
|
N1_prefix
|
||||||
|
N1_suffix
|
||||||
|
N1_pos
|
||||||
|
N1_lemma
|
||||||
|
N1_flags
|
||||||
|
|
||||||
|
N2_orth
|
||||||
|
N2_cluster
|
||||||
|
N2_shape
|
||||||
|
N2_prefix
|
||||||
|
N2_suffix
|
||||||
|
N2_pos
|
||||||
|
N2_lemma
|
||||||
|
N2_flags
|
||||||
|
|
||||||
|
N_CONTEXT_FIELDS
|
||||||
|
|
||||||
|
|
||||||
cdef class Tagger:
|
cdef class Tagger:
|
||||||
"""A part-of-speech tagger for English"""
|
"""A part-of-speech tagger for English"""
|
||||||
|
@classmethod
|
||||||
|
def read_config(cls, data_dir):
|
||||||
|
return json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def default_templates(cls):
|
||||||
|
return (
|
||||||
|
(W_orth,),
|
||||||
|
(P1_lemma, P1_pos),
|
||||||
|
(P2_lemma, P2_pos),
|
||||||
|
(N1_orth,),
|
||||||
|
(N2_orth,),
|
||||||
|
|
||||||
|
(W_suffix,),
|
||||||
|
(W_prefix,),
|
||||||
|
|
||||||
|
(P1_pos,),
|
||||||
|
(P2_pos,),
|
||||||
|
(P1_pos, P2_pos),
|
||||||
|
(P1_pos, W_orth),
|
||||||
|
(P1_suffix,),
|
||||||
|
(N1_suffix,),
|
||||||
|
|
||||||
|
(W_shape,),
|
||||||
|
(W_cluster,),
|
||||||
|
(N1_cluster,),
|
||||||
|
(N2_cluster,),
|
||||||
|
(P1_cluster,),
|
||||||
|
(P2_cluster,),
|
||||||
|
|
||||||
|
(W_flags,),
|
||||||
|
(N1_flags,),
|
||||||
|
(N2_flags,),
|
||||||
|
(P1_flags,),
|
||||||
|
(P2_flags,),
|
||||||
|
)
|
||||||
|
|
||||||
def make_lemmatizer(self):
|
def make_lemmatizer(self):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def __init__(self, StringStore strings, data_dir):
|
def __init__(self, Vocab vocab, templates):
|
||||||
self.mem = Pool()
|
self.mem = Pool()
|
||||||
model_dir = path.join(data_dir, 'pos')
|
self.vocab = vocab
|
||||||
self.strings = strings
|
|
||||||
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
|
||||||
self.tag_names = sorted(cfg['tag_names'])
|
|
||||||
assert self.tag_names
|
|
||||||
self.n_tags = len(self.tag_names)
|
|
||||||
self.tag_map = cfg['tag_map']
|
|
||||||
cdef int n_tags = len(self.tag_names) + 1
|
|
||||||
|
|
||||||
self.model = Model(n_tags, cfg['templates'], model_dir)
|
cdef int n_tags = self.vocab.morphology.n_tags + 1
|
||||||
self._morph_cache = PreshMapArray(n_tags)
|
|
||||||
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
|
self.model = Model(n_tags, templates)
|
||||||
for i, tag in enumerate(sorted(self.tag_names)):
|
|
||||||
pos, props = self.tag_map[tag]
|
|
||||||
self.tags[i].id = i
|
|
||||||
self.tags[i].pos = pos
|
|
||||||
set_morph_from_dict(&self.tags[i].morph, props)
|
|
||||||
if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')):
|
|
||||||
self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer',
|
|
||||||
'morphs.json'))))
|
|
||||||
self.lemmatizer = self.make_lemmatizer(data_dir)
|
|
||||||
self.freqs = {TAG: defaultdict(int)}
|
self.freqs = {TAG: defaultdict(int)}
|
||||||
for tag in self.tag_names:
|
for tag in self.tag_names:
|
||||||
self.freqs[TAG][self.strings[tag]] = 1
|
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
||||||
self.freqs[TAG][0] = 1
|
self.freqs[TAG][0] = 1
|
||||||
|
|
||||||
|
@property
|
||||||
|
def tag_names(self):
|
||||||
|
return tuple(sorted(self.vocab.morphology.tag_map.keys()))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_dir(cls, data_dir, vocab):
|
||||||
|
if path.exists(path.join(data_dir, 'templates.json')):
|
||||||
|
templates = json.loads(open(path.join(data_dir, 'templates.json')))
|
||||||
|
else:
|
||||||
|
templates = cls.default_templates()
|
||||||
|
return cls(vocab, templates)
|
||||||
|
|
||||||
def __call__(self, Doc tokens):
|
def __call__(self, Doc tokens):
|
||||||
"""Apply the tagger, setting the POS tags onto the Doc object.
|
"""Apply the tagger, setting the POS tags onto the Doc object.
|
||||||
|
|
||||||
|
@ -63,18 +142,14 @@ cdef class Tagger:
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
if tokens.data[i].pos == 0:
|
if tokens.data[i].pos == 0:
|
||||||
guess = self.predict(i, tokens.data)
|
guess = self.predict(i, tokens.data)
|
||||||
tokens.data[i].tag = self.strings[self.tag_names[guess]]
|
self.vocab.morphology.assign_tag(&tokens.data[i], guess)
|
||||||
self.set_morph(i, &self.tags[guess], tokens.data)
|
|
||||||
|
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
|
|
||||||
def tag_from_strings(self, Doc tokens, object tag_strs):
|
def tag_from_strings(self, Doc tokens, object tag_strs):
|
||||||
cdef int i
|
cdef int i
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
tokens.data[i].tag = self.strings[tag_strs[i]]
|
self.vocab.morphology.assign_tag(&tokens.data[i], tag_strs[i])
|
||||||
self.set_morph(i, &self.tags[self.tag_names.index(tag_strs[i])],
|
|
||||||
tokens.data)
|
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
|
|
||||||
|
@ -88,57 +163,51 @@ cdef class Tagger:
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
guess = self.update(i, tokens.data, golds[i])
|
guess = self.update(i, tokens.data, golds[i])
|
||||||
loss = golds[i] != -1 and guess != golds[i]
|
loss = golds[i] != -1 and guess != golds[i]
|
||||||
tokens.data[i].tag = self.strings[self.tag_names[guess]]
|
|
||||||
self.set_morph(i, &self.tags[guess], tokens.data)
|
self.vocab.morphology.assign_tag(&tokens.data[i], guess)
|
||||||
correct += loss == 0
|
correct += loss == 0
|
||||||
self.freqs[TAG][tokens.data[i].tag] += 1
|
self.freqs[TAG][tokens.data[i].tag] += 1
|
||||||
return correct
|
return correct
|
||||||
|
|
||||||
cdef int predict(self, int i, const TokenC* tokens) except -1:
|
cdef int predict(self, int i, const TokenC* tokens) except -1:
|
||||||
raise NotImplementedError
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||||
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
||||||
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
||||||
|
_fill_from_token(&context[W_orth], &tokens[i])
|
||||||
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
||||||
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
||||||
|
scores = self.model.score(context)
|
||||||
|
return arg_max(scores, self.model.n_classes)
|
||||||
|
|
||||||
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
|
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
|
||||||
raise NotImplementedError
|
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||||
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
||||||
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
||||||
|
_fill_from_token(&context[W_orth], &tokens[i])
|
||||||
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
||||||
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
||||||
|
scores = self.model.score(context)
|
||||||
|
guess = arg_max(scores, self.model.n_classes)
|
||||||
|
loss = guess != gold if gold != -1 else 0
|
||||||
|
self.model.update(context, guess, gold, loss)
|
||||||
|
return guess
|
||||||
|
|
||||||
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1:
|
|
||||||
tokens[i].pos = tag.pos
|
|
||||||
cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.orth)
|
|
||||||
if cached is NULL:
|
|
||||||
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
|
|
||||||
cached.lemma = self.lemmatize(tag.pos, tokens[i].lex)
|
|
||||||
cached.morph = tag.morph
|
|
||||||
self._morph_cache.set(tag.id, tokens[i].lex.orth, <void*>cached)
|
|
||||||
tokens[i].lemma = cached.lemma
|
|
||||||
tokens[i].morph = cached.morph
|
|
||||||
|
|
||||||
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1:
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
||||||
if self.lemmatizer is None:
|
context[0] = t.lex.lower
|
||||||
return lex.orth
|
context[1] = t.lex.cluster
|
||||||
cdef unicode py_string = self.strings[lex.orth]
|
context[2] = t.lex.shape
|
||||||
if pos != NOUN and pos != VERB and pos != ADJ:
|
context[3] = t.lex.prefix
|
||||||
return lex.orth
|
context[4] = t.lex.suffix
|
||||||
cdef set lemma_strings
|
context[5] = t.tag
|
||||||
cdef unicode lemma_string
|
context[6] = t.lemma
|
||||||
lemma_strings = self.lemmatizer(py_string, pos)
|
if t.lex.flags & (1 << IS_ALPHA):
|
||||||
lemma_string = sorted(lemma_strings)[0]
|
context[7] = 1
|
||||||
lemma = self.strings[lemma_string]
|
elif t.lex.flags & (1 << IS_PUNCT):
|
||||||
return lemma
|
context[7] = 2
|
||||||
|
elif t.lex.flags & (1 << LIKE_URL):
|
||||||
def load_morph_exceptions(self, dict exc):
|
context[7] = 3
|
||||||
cdef unicode pos_str
|
elif t.lex.flags & (1 << LIKE_NUM):
|
||||||
cdef unicode form_str
|
context[7] = 4
|
||||||
cdef unicode lemma_str
|
else:
|
||||||
cdef dict entries
|
context[7] = 0
|
||||||
cdef dict props
|
|
||||||
cdef int lemma
|
|
||||||
cdef attr_t orth
|
|
||||||
cdef int pos
|
|
||||||
for pos_str, entries in exc.items():
|
|
||||||
pos = self.tag_names.index(pos_str)
|
|
||||||
for form_str, props in entries.items():
|
|
||||||
lemma_str = props.get('L', form_str)
|
|
||||||
orth = self.strings[form_str]
|
|
||||||
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
|
|
||||||
cached.lemma = self.strings[lemma_str]
|
|
||||||
set_morph_from_dict(&cached.morph, props)
|
|
||||||
self._morph_cache.set(pos, orth, <void*>cached)
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user