mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Add support for history features in parsing models
This commit is contained in:
parent
ee41e4fea7
commit
b50a359e11
|
@ -51,6 +51,7 @@ from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
|||
from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune
|
||||
from .._ml import Residual, drop_layer, flatten
|
||||
from .._ml import link_vectors_to_models
|
||||
from .._ml import HistoryFeatures
|
||||
from ..compat import json_dumps
|
||||
|
||||
from . import _parse_features
|
||||
|
@ -68,7 +69,7 @@ from ..gold cimport GoldParse
|
|||
from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
|
||||
from . import _beam_utils
|
||||
|
||||
USE_FINE_TUNE = True
|
||||
USE_HISTORY = True
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
@ -261,18 +262,35 @@ cdef class Parser:
|
|||
|
||||
with Model.use_device('cpu'):
|
||||
if depth == 0:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
else:
|
||||
hist_size = 8
|
||||
nr_dim = 8
|
||||
if USE_HISTORY:
|
||||
upper = chain(
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=hist_size,
|
||||
nr_dim=nr_dim),
|
||||
zero_init(Affine(nr_class, nr_class+hist_size*nr_dim,
|
||||
drop_factor=0.0)))
|
||||
upper.is_noop = False
|
||||
else:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
elif USE_HISTORY:
|
||||
upper = chain(
|
||||
clone(Maxout(hidden_width), depth-1),
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=8, nr_dim=8),
|
||||
Maxout(hidden_width, hidden_width+8*8),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
else:
|
||||
upper = chain(
|
||||
Maxout(hidden_width, hidden_width),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
cfg = {
|
||||
'nr_class': nr_class,
|
||||
'depth': depth,
|
||||
|
@ -428,12 +446,18 @@ cdef class Parser:
|
|||
self._parse_step(next_step[i],
|
||||
feat_weights, nr_class, nr_feat, nr_piece)
|
||||
else:
|
||||
hists = []
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
hists.append([st.get_hist(j+1) for j in range(8)])
|
||||
hists = numpy.asarray(hists)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
scores = vec2scores(vectors)
|
||||
if USE_HISTORY:
|
||||
scores = vec2scores((vectors, hists))
|
||||
else:
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
|
@ -441,6 +465,7 @@ cdef class Parser:
|
|||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
st.push_hist(guess)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
|
@ -551,7 +576,11 @@ cdef class Parser:
|
|||
if drop != 0:
|
||||
mask = vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
vector *= mask
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
hists = numpy.asarray([st.history for st in states], dtype='i')
|
||||
if USE_HISTORY:
|
||||
scores, bp_scores = vec2scores.begin_update((vector, hists), drop=drop)
|
||||
else:
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
||||
d_scores = self.get_batch_loss(states, golds, scores)
|
||||
d_scores /= len(docs)
|
||||
|
@ -570,7 +599,8 @@ cdef class Parser:
|
|||
else:
|
||||
backprops.append((token_ids, d_vector, bp_vector))
|
||||
self.transition_batch(states, scores)
|
||||
todo = [st for st in todo if not st[0].is_final()]
|
||||
todo = [(st, gold) for (st, gold) in todo
|
||||
if not st.is_final()]
|
||||
if losses is not None:
|
||||
losses[self.name] += (d_scores**2).sum()
|
||||
n_steps += 1
|
||||
|
@ -706,12 +736,15 @@ cdef class Parser:
|
|||
cdef StateClass state
|
||||
cdef int[500] is_valid # TODO: Unhack
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
hists = []
|
||||
for state in states:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
c_scores += scores.shape[1]
|
||||
hists.append(guess)
|
||||
return hists
|
||||
|
||||
def get_batch_loss(self, states, golds, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
|
|
Loading…
Reference in New Issue
Block a user