mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-27 08:29:51 +03:00
Docs for ner.v3 and spancat.v3 spacy-llm tasks (#12949)
* formatting * update usage table with NER.v3 * fix typo in links * v3 overview of parameters * add spancat.v3 * add further v3 explanations * remove TODO comment * few more small fixes
This commit is contained in:
parent
d08b3ee8f7
commit
b52480f32e
|
@ -108,8 +108,8 @@ prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ |
|
||||
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ |
|
||||
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ |
|
||||
|
@ -120,7 +120,7 @@ note that this requirement will be included in the prompt, but the task doesn't
|
|||
perform a hard cut-off. It's hence possible that your summary exceeds
|
||||
`max_n_words`.
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -157,6 +157,101 @@ path = "summarization_examples.yml"
|
|||
|
||||
The NER task identifies non-overlapping entities in text.
|
||||
|
||||
#### spacy.NER.v3 {id="ner-v3"}
|
||||
|
||||
Version 3 is fundamentally different to v1 and v2, as it implements
|
||||
Chain-of-Thought prompting, based on the
|
||||
[PromptNER paper](https://arxiv.org/pdf/2305.15444.pdf) by Ashok and Lipton
|
||||
(2023). From preliminary experiments, we've found this implementation to obtain
|
||||
significant better accuracy.
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [components.llm.task]
|
||||
> @llm_tasks = "spacy.NER.v3"
|
||||
> labels = ["PERSON", "ORGANISATION", "LOCATION"]
|
||||
> ```
|
||||
|
||||
When no examples are [specified](/usage/large-language-models#few-shot-prompts),
|
||||
the v3 implementation will use a dummy example in the prompt. Technically this
|
||||
means that the task will always perform few-shot prompting under the hood.
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ |
|
||||
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
||||
Note that the `single_match` parameter, used in v1 and v2, is not supported
|
||||
anymore, as the CoT parsing algorithm takes care of this automatically.
|
||||
|
||||
New to v3 is the fact that you can provide an explicit description of what
|
||||
entities should look like. You can use this feature in addition to
|
||||
`label_definitions`.
|
||||
|
||||
```ini
|
||||
[components.llm.task]
|
||||
@llm_tasks = "spacy.NER.v3"
|
||||
labels = ["DISH", "INGREDIENT", "EQUIPMENT"]
|
||||
description = Entities are the names food dishes,
|
||||
ingredients, and any kind of cooking equipment.
|
||||
Adjectives, verbs, adverbs are not entities.
|
||||
Pronouns are not entities.
|
||||
|
||||
[components.llm.task.label_definitions]
|
||||
DISH = "Known food dishes, e.g. Lobster Ravioli, garlic bread"
|
||||
INGREDIENT = "Individual parts of a food dish, including herbs and spices."
|
||||
EQUIPMENT = "Any kind of cooking equipment. e.g. oven, cooking pot, grill"
|
||||
```
|
||||
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
||||
While not required, this task works best when both positive and negative
|
||||
examples are provided. The format is different than the files required for v1
|
||||
and v2, as additional fields such as `is_entity` and `reason` should now be
|
||||
provided.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"text": "You can't get a great chocolate flavor with carob.",
|
||||
"spans": [
|
||||
{
|
||||
"text": "chocolate",
|
||||
"is_entity": false,
|
||||
"label": "==NONE==",
|
||||
"reason": "is a flavor in this context, not an ingredient"
|
||||
},
|
||||
{
|
||||
"text": "carob",
|
||||
"is_entity": true,
|
||||
"label": "INGREDIENT",
|
||||
"reason": "is an ingredient to add chocolate flavor"
|
||||
}
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
```
|
||||
|
||||
```ini
|
||||
[components.llm.task.examples]
|
||||
@misc = "spacy.FewShotReader.v1"
|
||||
path = "${paths.examples}"
|
||||
```
|
||||
|
||||
For a fully working example, see this
|
||||
[usage example](https://github.com/explosion/spacy-llm/tree/main/usage_examples/ner_v3_openai).
|
||||
|
||||
#### spacy.NER.v2 {id="ner-v2"}
|
||||
|
||||
This version supports explicitly defining the provided labels with custom
|
||||
|
@ -173,10 +268,10 @@ v1.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ |
|
||||
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
|
@ -201,11 +296,15 @@ counter examples seems to work quite well.
|
|||
[components.llm.task]
|
||||
@llm_tasks = "spacy.NER.v2"
|
||||
labels = PERSON,SPORTS_TEAM
|
||||
|
||||
[components.llm.task.label_definitions]
|
||||
PERSON = "Extract any named individual in the text."
|
||||
SPORTS_TEAM = "Extract the names of any professional sports team. e.g. Golden State Warriors, LA Lakers, Man City, Real Madrid"
|
||||
```
|
||||
|
||||
For a fully working example, see this
|
||||
[usage example](https://github.com/explosion/spacy-llm/tree/main/usage_examples/ner_dolly).
|
||||
|
||||
#### spacy.NER.v1 {id="ner-v1"}
|
||||
|
||||
The original version of the built-in NER task supports both zero-shot and
|
||||
|
@ -249,7 +348,7 @@ the following parameters:
|
|||
span to the next token boundaries, e.g. expanding `"New Y"` out to
|
||||
`"New York"`.
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -278,6 +377,35 @@ path = "ner_examples.yml"
|
|||
|
||||
The SpanCat task identifies potentially overlapping entities in text.
|
||||
|
||||
#### spacy.SpanCat.v3 {id="spancat-v3"}
|
||||
|
||||
The built-in SpanCat v3 task is a simple adaptation of the NER v3 task to
|
||||
support overlapping entities and store its annotations in `doc.spans`.
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [components.llm.task]
|
||||
> @llm_tasks = "spacy.SpanCat.v3"
|
||||
> labels = ["PERSON", "ORGANISATION", "LOCATION"]
|
||||
> examples = null
|
||||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ |
|
||||
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
|
||||
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
||||
Note that the `single_match` parameter, used in v1 and v2, is not supported
|
||||
anymore, as the CoT parsing algorithm takes care of this automatically.
|
||||
|
||||
#### spacy.SpanCat.v2 {id="spancat-v2"}
|
||||
|
||||
The built-in SpanCat v2 task is a simple adaptation of the NER v2 task to
|
||||
|
@ -293,10 +421,10 @@ support overlapping entities and store its annotations in `doc.spans`.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
|
||||
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
|
||||
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
|
@ -361,10 +489,10 @@ prompt.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -388,9 +516,9 @@ V2 includes all v1 functionality, with an improved prompt template.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -423,7 +551,7 @@ prompting.
|
|||
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Deafults to `True`. ~~bool~~ |
|
||||
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Deafults to `False`. ~~bool~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -465,15 +593,15 @@ on an upstream NER component for entities extraction.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`rel.v1.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ |
|
||||
| `label_description` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -496,6 +624,9 @@ Note: the REL task relies on pre-extracted entities to make its prediction.
|
|||
Hence, you'll need to add a component that populates `doc.ents` with recognized
|
||||
spans to your spaCy pipeline and put it _before_ the REL component.
|
||||
|
||||
For a fully working example, see this
|
||||
[usage example](https://github.com/explosion/spacy-llm/tree/main/usage_examples/rel_openai).
|
||||
|
||||
### Lemma {id="lemma"}
|
||||
|
||||
The Lemma task lemmatizes the provided text and updates the `lemma_` attribute
|
||||
|
@ -514,8 +645,8 @@ This task supports both zero-shot and few-shot prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ |
|
||||
| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
|
||||
The task prompts the LLM to lemmatize the passed text and return the lemmatized
|
||||
|
@ -539,7 +670,7 @@ doesn't match the number of tokens from the pipeline's tokenizer, no lemmas are
|
|||
stored in the corresponding doc's tokens. Otherwise the tokens `.lemma_`
|
||||
property is updated with the lemma suggested by the LLM.
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -591,12 +722,12 @@ This task supports both zero-shot and few-shot prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ---------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ |
|
||||
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||||
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||||
|
@ -648,7 +779,9 @@ implementations can have other signatures, like
|
|||
|
||||
### Models via REST API {id="models-rest"}
|
||||
|
||||
These models all take the same parameters, but note that the `config` should contain provider-specific keys and values, as it will be passed onwards to the provider's API.
|
||||
These models all take the same parameters, but note that the `config` should
|
||||
contain provider-specific keys and values, as it will be passed onwards to the
|
||||
provider's API.
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
|
|
|
@ -142,7 +142,7 @@ pipeline = ["llm"]
|
|||
factory = "llm"
|
||||
|
||||
[components.llm.task]
|
||||
@llm_tasks = "spacy.NER.v2"
|
||||
@llm_tasks = "spacy.NER.v3"
|
||||
labels = ["PERSON", "ORGANISATION", "LOCATION"]
|
||||
|
||||
[components.llm.model]
|
||||
|
@ -359,22 +359,24 @@ function.
|
|||
| [`task.parse_responses`](/api/large-language-models#task-parse-responses) | Takes a collection of LLM responses and the original documents, parses the responses into structured information, and sets the annotations on the documents. |
|
||||
|
||||
Moreover, the task may define an optional [`scorer` method](/api/scorer#score).
|
||||
It should accept an iterable of `Example`s as input and return a score
|
||||
It should accept an iterable of `Example` objects as input and return a score
|
||||
dictionary. If the `scorer` method is defined, `spacy-llm` will call it to
|
||||
evaluate the component.
|
||||
|
||||
| Component | Description |
|
||||
| ----------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ----------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
|
||||
| [`spacy.Summarization.v1`](/api/large-language-models#summarization-v1) | The summarization task prompts the model for a concise summary of the provided text. |
|
||||
| [`spacy.NER.v2`](/api/large-language-models#ner-v2) | The built-in NER task supports both zero-shot and few-shot prompting. This version also supports explicitly defining the provided labels with custom descriptions. |
|
||||
| [`spacy.NER.v3`](/api/large-language-models#ner-v3) | Implements Chain-of-Thought reasoning for NER extraction - obtains higher accuracy than v1 or v2. |
|
||||
| [`spacy.NER.v2`](/api/large-language-models#ner-v2) | Builds on v1 and additionally supports defining the provided labels with explicit descriptions. |
|
||||
| [`spacy.NER.v1`](/api/large-language-models#ner-v1) | The original version of the built-in NER task supports both zero-shot and few-shot prompting. |
|
||||
| [`spacy.SpanCat.v2`](/api/large-language-models#spancat-v2) | The built-in SpanCat task is a simple adaptation of the NER task to support overlapping entities and store its annotations in `doc.spans`. |
|
||||
| [`spacy.SpanCat.v1`](/api/large-language-models#spancat-v1) | The original version of the built-in SpanCat task is a simple adaptation of the v1 NER task to support overlapping entities and store its annotations in `doc.spans`. |
|
||||
| [`spacy.TextCat.v3`](/api/large-language-models#textcat-v3) | Version 3 (the most recent) of the built-in TextCat task supports both zero-shot and few-shot prompting. It allows setting definitions of labels. |
|
||||
| [`spacy.TextCat.v2`](/api/large-language-models#textcat-v2) | Version 2 of the built-in TextCat task supports both zero-shot and few-shot prompting and includes an improved prompt template. |
|
||||
| [`spacy.SpanCat.v3`](/api/large-language-models#spancat-v3) | Adaptation of the v3 NER task to support overlapping entities and store its annotations in `doc.spans`. |
|
||||
| [`spacy.SpanCat.v2`](/api/large-language-models#spancat-v2) | Adaptation of the v2 NER task to support overlapping entities and store its annotations in `doc.spans`. |
|
||||
| [`spacy.SpanCat.v1`](/api/large-language-models#spancat-v1) | Adaptation of the v1 NER task to support overlapping entities and store its annotations in `doc.spans`. |
|
||||
| [`spacy.REL.v1`](/api/large-language-models#rel-v1) | Relation Extraction task supporting both zero-shot and few-shot prompting. |
|
||||
| [`spacy.TextCat.v3`](/api/large-language-models#textcat-v3) | Version 3 builds on v2 and allows setting definitions of labels. |
|
||||
| [`spacy.TextCat.v2`](/api/large-language-models#textcat-v2) | Version 2 builds on v1 and includes an improved prompt template. |
|
||||
| [`spacy.TextCat.v1`](/api/large-language-models#textcat-v1) | Version 1 of the built-in TextCat task supports both zero-shot and few-shot prompting. |
|
||||
| [`spacy.REL.v1`](/api/large-language-models#rel-v1) | The built-in REL task supports both zero-shot and few-shot prompting. It relies on an upstream NER component for entities extraction. |
|
||||
| [`spacy.Lemma.v1`](/api/large-language-models#lemma-v1) | The `Lemma.v1` task lemmatizes the provided text and updates the `lemma_` attribute in the doc's tokens accordingly. |
|
||||
| [`spacy.Lemma.v1`](/api/large-language-models#lemma-v1) | Lemmatizes the provided text and updates the `lemma_` attribute of the tokens accordingly. |
|
||||
| [`spacy.Sentiment.v1`](/api/large-language-models#sentiment-v1) | Performs sentiment analysis on provided texts. |
|
||||
| [`spacy.NoOp.v1`](/api/large-language-models#noop-v1) | This task is only useful for testing - it tells the LLM to do nothing, and does not set any fields on the `docs`. |
|
||||
|
||||
|
@ -469,7 +471,7 @@ provider's documentation.
|
|||
|
||||
</Infobox>
|
||||
|
||||
| Component | Description |
|
||||
| Model | Description |
|
||||
| ----------------------------------------------------------------------- | ---------------------------------------------- |
|
||||
| [`spacy.GPT-4.v1`](/api/large-language-models#models-rest) | OpenAI’s `gpt-4` model family. |
|
||||
| [`spacy.GPT-3-5.v1`](/api/large-language-models#models-rest) | OpenAI’s `gpt-3-5` model family. |
|
||||
|
@ -512,7 +514,7 @@ documents at each run that keeps batches of documents stored on disk.
|
|||
|
||||
### Various functions {id="various-functions"}
|
||||
|
||||
| Component | Description |
|
||||
| Function | Description |
|
||||
| ----------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| [`spacy.FewShotReader.v1`](/api/large-language-models#fewshotreader-v1) | This function is registered in spaCy's `misc` registry, and reads in examples from a `.yml`, `.yaml`, `.json` or `.jsonl` file. It uses [`srsly`](https://github.com/explosion/srsly) to read in these files and parses them depending on the file extension. |
|
||||
| [`spacy.FileReader.v1`](/api/large-language-models#filereader-v1) | This function is registered in spaCy's `misc` registry, and reads a file provided to the `path` to return a `str` representation of its contents. This function is typically used to read [Jinja](https://jinja.palletsprojects.com/en/3.1.x/) files containing the prompt template. |
|
||||
|
|
Loading…
Reference in New Issue
Block a user